京都大 三次方程式の解 - 質問解決D.B.(データベース)

京都大 三次方程式の解

問題文全文(内容文):
$k\gt 0$であるとする.
$x(x+3)(x-3)+3k(x+1)(x-1)=0$が3つ実数解をもつことを示せ.

1967京都大(文理共通)過去問
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$k\gt 0$であるとする.
$x(x+3)(x-3)+3k(x+1)(x-1)=0$が3つ実数解をもつことを示せ.

1967京都大(文理共通)過去問
投稿日:2020.04.07

<関連動画>

大学入試問題#600「合同式使ってみた」 山梨大学医学部(2014) #整式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#整式の除法・分数式・二項定理#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$x^{2014}$を$x^4+x^3+x^2+x+1$で割った余りを求めよ

出典:2014年山梨大学 入試問題
この動画を見る 

3乗根の方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数解を求めよ.
$ x^3+1=2\sqrt[3]{2x-1}$
この動画を見る 

慶應(医)三次方程式の解とΣ

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$8x^3-6x+1=0$の3つの解を$\alpha,\beta,\delta$とする.これを解け.
$\displaystyle \sum_{n=0}^{\infty}(\alpha^n+\beta^n+\delta^n)$

1993慶應(医)
この動画を見る 

福田の数学〜早稲田大学2022年人間科学部第4問〜3変数の基本対称式と解と係数の関係

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#複素数#解と判別式・解と係数の関係#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{4}}$互いに異なる実数$a,b,c$について、
$a+b+c=0,\ bc+ca+ab=-3$であるとき、
$abc$のとりうる値の範囲は、$\boxed{\ \ ア\ \ } \lt abc \lt \boxed{\ \ イ\ \ }$である。
さらに$a \lt b \lt c$のとき、$a,b,c$のとりうる値の範囲は
$\boxed{\ \ ウ\ \ } \lt a \lt \boxed{\ \ エ\ \ } \lt b \lt \boxed{\ \ オ\ \ } \lt c \lt \boxed{\ \ カ\ \ }$である。

2022早稲田大学人間科学部過去問
この動画を見る 

福田のおもしろ数学194〜6次方程式をどう解くか

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$(x+7)^7=x^7+7^7$ を満たすすべての $x$ を求めよ。
この動画を見る 
PAGE TOP