整数問題 - 質問解決D.B.(データベース)

整数問題

問題文全文(内容文):
自然数$ m,n(m \gt n)$を求めよ.
$ \dfrac{1}{m}+\dfrac{1}{n}=\dfrac{3}{77}$
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数$ m,n(m \gt n)$を求めよ.
$ \dfrac{1}{m}+\dfrac{1}{n}=\dfrac{3}{77}$
投稿日:2022.03.17

<関連動画>

9999の倍数 洛南高校附属中

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
8ケタの整数7A5BC3D1が9999の倍数になるとき
$A=? B=? C=? D=?$
洛南高等学校附属中学校
この動画を見る 

息抜き整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
次の数はすべて整数であるとき,これを解け.

$\sqrt[3]{4913}$
$\sqrt[3]{79507}$
$\sqrt[3]{314432}$
この動画を見る 

【数学A】7の倍数の見分け方を伝授します【3桁ずつ分割!map mapで計算せよ!】

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学A】7の倍数の見分け方説明動画です
この動画を見る 

数学オリンピック 予選簡単問題 6000の約数、平方数でないものの個数

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
数学オリンピック予選
超簡単問題
6000の正の約数で平方数でないものは何個か。
この動画を見る 

整数問題 桃山学院

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
m,nは自然数
$4m^2+n^2 = 200 $を満たすmnの値を全て求めよ。

桃山学院高等学校
この動画を見る 
PAGE TOP