横浜市立(医)約数・倍数 - 質問解決D.B.(データベース)

横浜市立(医)約数・倍数

問題文全文(内容文):
自然数$A,B$の最大公約数が$G$であり,最小公倍数が$L$である.
$L^2-G^2=72$であるとき,$(A,B)$をすべて求めよ.

2021横浜市立(医)
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数$A,B$の最大公約数が$G$であり,最小公倍数が$L$である.
$L^2-G^2=72$であるとき,$(A,B)$をすべて求めよ.

2021横浜市立(医)
投稿日:2021.04.28

<関連動画>

チャレンジチューブ 解答編

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$a^2+2b^2=7c^2$を満たす整数$(a,b,c)$を全て求めよ

(2)
$x^2+2y^2=11z^2$を満たすすべて2以上の自然数$x,y,z$を1組例示せよ
※追加$x,y,z$互いに素
この動画を見る 

北海道大 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
k,nを自然数とする.
$25×3^n=k^2+176,(k,n)$をすべて求めよ.

2021北海道大過去問
この動画を見る 

つくば国際 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a$自然数
$a^2+2$が$2a+1$の倍数となる$a$の値を求めよ

出典:つくば国際大学 過去問
この動画を見る 

数学オリンピック 予選の簡単な問題

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
数学オリンピック予選問題
自然数、正の約数全ての積が$24^{240}$となるものをすべて求めよ。
この動画を見る 

整数問題2021

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2021^{2021^{2021}}$の下3桁を求めよ.
この動画を見る 
PAGE TOP