横浜市立(医)約数・倍数 - 質問解決D.B.(データベース)

横浜市立(医)約数・倍数

問題文全文(内容文):
自然数$A,B$の最大公約数が$G$であり,最小公倍数が$L$である.
$L^2-G^2=72$であるとき,$(A,B)$をすべて求めよ.

2021横浜市立(医)
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数$A,B$の最大公約数が$G$であり,最小公倍数が$L$である.
$L^2-G^2=72$であるとき,$(A,B)$をすべて求めよ.

2021横浜市立(医)
投稿日:2021.04.28

<関連動画>

神戸大 N進法

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$N_{(10)}$を7進法、11進法で表すといずれも3ケタになり、数字の並びが反対であった。
$N_{(10)}$を求めよ
$ac \neq 0$

出典:1968年神戸大学 過去問
この動画を見る 

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \sum_{k=1}^n k!=m^2$を満たす自然数$(m,n)$をすべて求めよ.
この動画を見る 

練習問題32 整数問題 岡山大学文系類題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#岡山大学
指導講師: ますただ
問題文全文(内容文):
$2^{n+3},2^n$を$7$で割った余りが等しいこと
を示せ.
この動画を見る 

高校入試の整数問題 神村学園(鹿児島)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$6<n(n+1)(n+2)<300$を満たす自然数nの個数を求めよ。

神村学園
この動画を見る 

麻布獣医 整数 素数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$P$素数、$a,b$自然数
$P=a^3+2a^2b-2ab^2-b^3$
$P$の1の位の数を求めよ

出典:麻布大学獣医学部 過去問
この動画を見る 
PAGE TOP