指数方程式 - 質問解決D.B.(データベース)

指数方程式

問題文全文(内容文):
以下を解け
$9^x+15^x=25^x$
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
以下を解け
$9^x+15^x=25^x$
投稿日:2019.12.08

<関連動画>

2021東京医科大学 そんなやり方もあるか!4次方程式の解

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^4+11x^3+31x^2+11x+1=0$の$4$つの解を$\alpha,\beta,\delta,\zeta$とする.
$x+\dfrac{1}{x}=y$として,$y$の方程式を求めよ.

①$\dfrac{1}{\alpha}+\dfrac{1}{\beta}+\dfrac{1}{\delta}+\dfrac{1}{\zeta}$
②$\alpha^2+\beta^2+\delta^2+\zeta^2$
③$\alpha^3+\beta^3+\delta^3+\zeta^3$

2021東京医科大過去問
この動画を見る 

福田の数学〜神戸大学2023年理系第2問〜2次方程式の解の存在範囲

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#2次方程式と2次不等式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ a,bを実数とする。整式$f(x)$=$x^2$+$ax$+$b$ で定める。以下の問いに答えよ。ただし、2次方程式の重解は2つと数える。
(1)2次方程式$f(x)$=0が異なる2つの正の解をもつためのaとbが満たすべき必要十分条件を求めよ。
(2)2次方程式$f(x)$=0の2つの解の実部が共に0より小さくなるような点(a, b)の存在する範囲をab平面上に図示せよ。
(3)2次方程式$f(x)$=0の2つの解の実部が共に-1より大きく、0より小さくなるような点(a, b)の存在する範囲をab平面上に図示せよ。

2023神戸大学理系過去問
この動画を見る 

藤田医科大 複素数の計算

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2-x+1=0$
$12x^{2026}+23x^{2025}+34x^{2024}+45x^{2023}+$
$56x^{2022}+67^{2021}$の値を求めよ.

2021藤田医科大過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題045〜東北大学2017年度理系第1問〜絶対値の付いた2次関数のグラフと直線の共有点の個数

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#2次関数とグラフ#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a,b$を実数とする。$y=|x^2-4|$で表される曲線をCとし、
$y=ax+b$で表される直線をlとする。

(1)lが点(-2,0)を通り、lとCがちょうど3つの共有点をもつような
a,bの条件を求めよ。
(2)lとCがちょうど3つの共有点をもつような点(a,b)の軌跡を
ab平面上に図示せよ。

2017東北大学理系過去問
この動画を見る 

方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.$x$を実数とする.

$\sqrt{x^2+3x+2}-\sqrt{x^2+2x+5}=3-x$
この動画を見る 
PAGE TOP