【数Ⅲ】【関数と極限】rは定数とする。次の数列の極限を調べよ。(1) r>0のとき{1/2+r^n}(2) r≠±1のとき{r^n+2/r^n-1}(3) r≠0のとき{1/r^n} - 質問解決D.B.(データベース)

【数Ⅲ】【関数と極限】rは定数とする。次の数列の極限を調べよ。(1) r>0のとき{1/2+r^n}(2) r≠±1のとき{r^n+2/r^n-1}(3) r≠0のとき{1/r^n}

問題文全文(内容文):
rは定数とする。次の数列の極限を調べよ。
(1) r>0のとき{$\dfrac{1}{2+r^n}$}

(2) r≠±1のとき{$\dfrac{r^n+2}{r^n-1}$}

(3) r≠0のとき{$\dfrac{1}{r^n}$}
チャプター:

0:00 問題と方針
1:11 (1)の解説
2:38 (2)の解説
4:28 (3)の解説

単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
rは定数とする。次の数列の極限を調べよ。
(1) r>0のとき{$\dfrac{1}{2+r^n}$}

(2) r≠±1のとき{$\dfrac{r^n+2}{r^n-1}$}

(3) r≠0のとき{$\dfrac{1}{r^n}$}
投稿日:2025.06.24

<関連動画>

【高校数学】数Ⅲ-68 数列の極限④ はさみうちの原理

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の数列の極限を求めよ。

①$\displaystyle \lim_{n\to\infty}\dfrac{(-1)^n}{n+3}$

②$\displaystyle \lim_{n\to\infty}\dfrac{1}{n}\sin^2 n\theta \quad $($\theta$は定数)
この動画を見る 

福田のわかった数学〜高校3年生理系046〜極限(46)関数の連続性(3)

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 関数の連続性(3)
$f(x)=\left\{\begin{array}{1}
\displaystyle\frac{x^2}{|x|} (x≠0)\\
0  (x=0)\\
\end{array}\right.$
は、$x=0$で連続か、調べよ。
この動画を見る 

高校数学:数学検定準1級1次:問題6,7 双曲線の焦点、関数の極限

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#平面上の曲線#関数と極限#2次曲線#関数の極限#数学検定#数学検定準1級#数学(高校生)#数C#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
xy平面上の双曲線

$\frac{x^2}{36}-\frac{y^2}{64}=-1$

の焦点の座標を求めなさい。


次の極限値を求めなさい。

$\displaystyle \lim_{ x \to 1 }\displaystyle \frac{x^2+2x-3}{\sqrt[ 3 ]{ x }-1}$
この動画を見る 

大学入試問題#395「使う技は、関数から・・・」 大阪市立大学2009 #極限 誘導は概要欄

アイキャッチ画像
単元: #関数と極限#積分とその応用#関数の極限#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)
$0 \leqq x \leqq \displaystyle \frac{\pi}{2}$のとき
$\sin\ x \geqq \displaystyle \frac{2}{\pi}x$を示せ

(2)
$\displaystyle \lim_{ n \to \infty } \displaystyle \int_{0}^{\frac{\pi}{2}} e^{-n\ \sin\ x}dx=0$を示せ

出典:2009年大阪市立大学 入試問題
この動画を見る 

大学入試問題#568「素直に正面突破」 東京帝国大学(1968) #広義積分

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{ \infty } \displaystyle \frac{xe^{-x}}{(1+e^{-x})^2}\ dx$

出典:1938年東京帝国大学 入試問題
この動画を見る 
PAGE TOP