素数か? - 質問解決D.B.(データベース)

素数か?

問題文全文(内容文):
$A_{2023}$は素数か?
$A_n=\alpha^n+\beta^n+\delta^n$
$A_1=\alpha+\beta+\delta=1$
$A_2=\alpha^2+\beta^2+\delta^2=3$
$A_3=\alpha^3+\beta^3+\delta^3=10$
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$A_{2023}$は素数か?
$A_n=\alpha^n+\beta^n+\delta^n$
$A_1=\alpha+\beta+\delta=1$
$A_2=\alpha^2+\beta^2+\delta^2=3$
$A_3=\alpha^3+\beta^3+\delta^3=10$
投稿日:2023.02.07

<関連動画>

福田の1.5倍速演習〜合格する重要問題045〜東北大学2017年度理系第1問〜絶対値の付いた2次関数のグラフと直線の共有点の個数

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#2次関数とグラフ#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a,b$を実数とする。$y=|x^2-4|$で表される曲線をCとし、
$y=ax+b$で表される直線をlとする。

(1)lが点(-2,0)を通り、lとCがちょうど3つの共有点をもつような
a,bの条件を求めよ。
(2)lとCがちょうど3つの共有点をもつような点(a,b)の軌跡を
ab平面上に図示せよ。

2017東北大学理系過去問
この動画を見る 

光文社新書「中学の知識でオイラーの公式がわかる」Vol.3余弦定理

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
余弦定理解説動画です
この動画を見る 

地道な解法にも工夫あり&ナイスな解法

アイキャッチ画像
単元: #数Ⅰ#数と式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^3-2x^2-3x-1=0$の3つの解を$\alpha,\beta,\delta$とする.
$(\alpha^3-1)(\beta^3-1)(\delta^3-1)$の値を求めよ.
この動画を見る 

福田のおもしろ数学150〜sin1°は有理数か

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\sin 1°$ は有理数か?
この動画を見る 

【短時間でマスター!!】3元1次方程式を使った2次関数の決定解説!〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
数学1A
グラフが3点(1,3)(2,5)(3,9)を通るような2次関数は?
この動画を見る 
PAGE TOP