合同式の基礎 累乗の式変形 - 質問解決D.B.(データベース)

合同式の基礎 累乗の式変形

問題文全文(内容文):
$3^{2n+1}+4^{3n-1}$が7の倍数となる自然数$n$を3つ求めよ
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3^{2n+1}+4^{3n-1}$が7の倍数となる自然数$n$を3つ求めよ
投稿日:2019.12.26

<関連動画>

中学生向け整数問題その3

アイキャッチ画像
単元: #中2数学#式の計算(単項式・多項式・式の四則計算)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数A,Bの最大公約数が6で最小公倍数は432である.(A,B)をすべて求めよ.
この動画を見る 

千葉大 n次方程式の整数解

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$P$は素数であり,$n\geqq 2$は自然数とする.
$x^n-p^n x-p^{n+1}=0$は整数解をもたないことを示せ.

2009千葉大過去問
この動画を見る 

√と二乗は打ち消し合う?? 熊本マリスト学園

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#数A#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$9+\sqrt {a^2} = 25$
整数aを求めよ

熊本マリスト学園高等学校
この動画を見る 

福田のおもしろ数学055〜自然数を連続整数の和で表す方法〜偶奇性に注目しよう

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
2024をいくつかの連続する自然数の和で表せ。
この動画を見る 

高校生からのDM

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$N=1^n+2^n+3^n+・・・・+2025^n$
Nはn(自然数)の値がいくつでも素数になり得ないことを示せ.
この動画を見る 
PAGE TOP