福田の数学〜中央大学2024経済学部第3問〜数列と漸化式 - 質問解決D.B.(データベース)

福田の数学〜中央大学2024経済学部第3問〜数列と漸化式

問題文全文(内容文):
3.
座標平面上に曲線 $C$ : $y = x ^ 2 - 2x$ がある。$C$上の点$P_n (a_n, a_n²-2a_n) \ ( n = 1 , 2, 3, ・・・) $について、 $a_{1} = 4$ とし、 $a_{n + 1}$ は$C$の$P_n$における接線と$x$軸との交点の$x$座標であるとする。このとき、$a_n$は$1$より大きいことが分かっている。以下の設問に答えよ。

(1) $a_{n+ 1}$を$a_n$を用いて表せ。
(2) $b_{n}= \dfrac{a_n-2}{a_n}$とするとき、 $b_{n+ 1}$ を$b_n$を用いて表せ。
(3) $b_n$を$n$を用いて表せ。
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
3.
座標平面上に曲線 $C$ : $y = x ^ 2 - 2x$ がある。$C$上の点$P_n (a_n, a_n²-2a_n) \ ( n = 1 , 2, 3, ・・・) $について、 $a_{1} = 4$ とし、 $a_{n + 1}$ は$C$の$P_n$における接線と$x$軸との交点の$x$座標であるとする。このとき、$a_n$は$1$より大きいことが分かっている。以下の設問に答えよ。

(1) $a_{n+ 1}$を$a_n$を用いて表せ。
(2) $b_{n}= \dfrac{a_n-2}{a_n}$とするとき、 $b_{n+ 1}$ を$b_n$を用いて表せ。
(3) $b_n$を$n$を用いて表せ。
投稿日:2024.08.13

<関連動画>

福田の数学〜早稲田大学2024商学部第1問(3)〜漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$C$を$1$でない正の実数とする。正の実数の数列$\{a_n\}$が次の条件を満たしている。
$a_1=C,$${a_n}^{n+1}{a_{n+1}}^n=C^{-(2n+1)}$
このとき、一般項$a_n$を$C$を用いて表せ。
この動画を見る 

福田のおもしろ数学371〜初項が素数で漸化式で定義された数列が素数でない項をもつ証明

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$a_1=p$(素数), $a_{n+1}=2a_n-1$で定まる数列には素数でない項が存在する。証明せよ。
この動画を見る 

10大阪府教員採用試験(数学:1番 数列の極限値)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#関数と極限#数列の極限#その他#数学(高校生)#数B#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
1⃣$-\frac{3}{2} < a_1 < 3$ , $a_{n+1}=\sqrt{2a_n+3}$
(1)$a_1 < a_2$
(2)$2 \leqq n, 0 < a_n < 3$
(3)$1 \leqq n, 0 < 3-a_n \leqq (\frac{2}{3})^{n-1}(3-a_1)$
(4)$\displaystyle \lim_{ n \to \infty } a_n$
この動画を見る 

08愛知県教員採用試験(数学:4番 数列)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$a_1=a_2=1,a_{n+2}=a_{n+1}+a_n$である.

$\displaystyle \lim_{ n \to \infty }\dfrac{a_{n-1}}{a_n}$の値を求めよ.
この動画を見る 

室蘭工業大 漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#室蘭工業大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=\displaystyle \frac{1}{2}$ 一般項を求めよ

$a_{n+1}=\displaystyle \frac{(n+1)a_n}{n+3^na_n}$

出典:2018年蘭工業大学 過去問
この動画を見る 
PAGE TOP