難易度バリ高の極限 by 餃子n人前さん ※作成者の解答を参考に動画を作成しています。 - 質問解決D.B.(データベース)

難易度バリ高の極限 by 餃子n人前さん ※作成者の解答を参考に動画を作成しています。

問題文全文(内容文):
$a_1=1,$ $a_{n+1}+a_n=\displaystyle \frac{1}{n}$のとき、
$\displaystyle \lim_{ n \to \infty } |na_n|$を求めよ
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a_1=1,$ $a_{n+1}+a_n=\displaystyle \frac{1}{n}$のとき、
$\displaystyle \lim_{ n \to \infty } |na_n|$を求めよ
投稿日:2024.09.04

<関連動画>

16神奈川県教員採用試験(数学:8番 数列の極限)

アイキャッチ画像
単元: #数列#漸化式#関数と極限#数列の極限#数学(高校生)#数B#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
8⃣ $3S_n=a_n+6n+1$のとき$\displaystyle \lim_{ n \to \infty } a_n$を求めよ。
この動画を見る 

大学入試問題#351「積分できて満足できない問題」 電気通信大学(2013) #定積分 #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#電気通信大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \frac{1}{n}\displaystyle \int_{-n}^{n} (\displaystyle \frac{e^x}{e^x+e^{-x}})^2 dx$

出典:2013年電気通信大学 入試問題
この動画を見る 

浜松医大 確率 サイコロ4個・n個 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
浜松医科大学過去問題
(1)4個のサイコロを投げて1,1,2,2のように同じ目がちょうど2個ずつでる確率
(2)n=4,5,6・・・としてn個のサイコロを投げて、少なくとも(n-2)個のサイコロに同じ目がそろって出る確率$P_n$
 また$\displaystyle\lim_{n \to \infty}\frac{P_n+1}{P_n}$
この動画を見る 

大学入試問題#470「誘導なくてもどうにかできそう」 信州大学 理・医学部(2021) #微積の応用

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#関数の極限#色々な関数の導関数#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\forall\ a,b$
$f(a+b)=f(a)+f(b)+4ab$
$f'(0)=2$
(1)
$f(0)$を求めよ

(2)
$f(x)$は微分可能を示せ
$f(x)$を求めよ

(3)
$\displaystyle \lim_{ x \to \infty } \displaystyle \int_{1}^{x} \displaystyle \frac{1}{f(t)}dt(x \gt 1)$

出典:2021年信州大学 入試問題
この動画を見る 

福田の数学〜名古屋大学2022年理系第4問〜定積分の極限と方程式の解

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
関数f(x)は区間$x \geqq 0$において連続な増加関数で$f(0)=1$を満たすとする。
ただしf(x)が区間$x \geqq 0$における増加関数であるとは、区間内の任意の実数$x_1,x_2$に対し
$x_1 \lt x_2$ならば$f(x_1) \lt f(x_2)$が成り立つ時をいう。以下、nは正の整数とする。
(1)$\lim_{n \to \infty}\int_0^{2-\frac{1}{n}}\frac{f(x)}{2-x}dx=\infty$ を示せ。
(2)区間$y \gt 2$ において関数$F_n(y)$を$F_n(y)=\int_{2+\frac{1}{n}}^y\frac{f(x)}{2-x}dx$と定めるとき、

$\lim_{y \to \infty}F_n(y)=\infty$を示せ。また$2+\frac{1}{n}$より大きい実数$a_n$で

$\int_0^{2-\frac{1}{n}}\frac{f(x)}{2-x}dx+\int_{{2+\frac{1}{n}}}^{a_n}\frac{f(x)}{2-x}dx=0$

を満たすものがただ1つ存在することを示せ。
(3)(2)の$a_n$について、不等式$a_n \lt 4$がすべてのnに対して成り立つことを示せ。

2022名古屋大学理系過去問
この動画を見る 
PAGE TOP