青山学院大 微分の基礎 - 質問解決D.B.(データベース)

青山学院大 微分の基礎

問題文全文(内容文):
青山学院大学過去問題
$C:y=x^2$
A(-1,1),B(4,16)
放物線C上にx座標が
$t(-1<t<4)$である点P
直線AB上にx座標がtである点Qととる。
△APQの面積の最大値とそのときのtの値
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#青山学院大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
青山学院大学過去問題
$C:y=x^2$
A(-1,1),B(4,16)
放物線C上にx座標が
$t(-1<t<4)$である点P
直線AB上にx座標がtである点Qととる。
△APQの面積の最大値とそのときのtの値
投稿日:2023.06.16

<関連動画>

数学どうにかしたい人へ

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#図形の性質#式と証明#複素数と方程式#平面上のベクトル#空間ベクトル#平面上の曲線#複素数平面#図形と計量#データの分析#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#データの分析#整数の性質#場合の数#確率#三角形の辺の比(内分・外分・二等分線)#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#図形と方程式#三角関数#指数関数と対数関数#微分法と積分法#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#円と方程式#軌跡と領域#三角関数とグラフ#加法定理とその応用#指数関数#対数関数#平均変化率・極限・導関数#接線と増減表・最大値・最小値#数列#確率分布と統計的な推測#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#数列とその和(等差・等比・階差・Σ)#漸化式#数学的帰納法#確率分布#統計的な推測#関数と極限#微分とその応用#積分とその応用#2次曲線#複素数平面#図形への応用#関数(分数関数・無理関数・逆関数と合成関数)#数列の極限#関数の極限#微分法#色々な関数の導関数#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#不定積分#定積分#面積・体積・長さ・速度#空間における垂直と平行と多面体(オイラーの法則)#不定積分・定積分#面積、体積#媒介変数表示と極座標#速度と近似式#数学(高校生)#数B#数C#数Ⅲ
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
数学が共通テストのみの人の勉強法紹介動画です
この動画を見る 

福田の1.5倍速演習〜合格する重要問題093〜中央大学2020年度理工学部第5問〜円周上の点と三角形五角形の面積

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#三角関数#微分法と積分法#三角関数とグラフ#加法定理とその応用#学校別大学入試過去問解説(数学)#面積、体積#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 原点Oを中心とする半径1の円周上に2点
Q($\cos a$, $\sin a$), R($\cos(a+b), \sin(a+b)$)
をとる。ただし、a, bはa >0,b >0, a +b<$\frac{\pi}{2}$を満たす。また、点Qからx軸へ下ろした垂線の足を点Pとし、点Rからy軸へ下した垂線の足を点Sとする。
$\triangle$OPQの面積と$\triangle$ORSの面積の和をA, 五角形OPQRSの面積をBとおく。
(1)Aをaとbで表せ。
(2)bを固定して、aを0<a<$\frac{\pi}{2}$-bの範囲で動かすとき、Aがとりうる値の範囲をbで表し、Aが最大値をとるときのaの値をbで表せ。
(3)Bはa=$\frac{\pi}{8}$, b=$\frac{\pi}{4}$のときに最大値をとることを示せ。

2020中央大学理工学部過去問
この動画を見る 

福田の数学〜名古屋大学2023年理系第2問〜回転体の体積と関数の増減と最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#積分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#面積、体積#数学(高校生)#名古屋大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 0<b<a とする。xy平面において、原点を中心とする半径rの円Cと点(a, 0)を中心とする半径bの円Dが2点で交わっている。
(1)半径rの満たすべき条件を求めよ。
(2)CとDの交点のうちy座標が正のものをPとする。Pのx座標h(r)を求めよ。
(3)点Q(r, 0)と点R(a-b, 0)をとる。Dの内部にあるCの弧PQ、線分QR、および線分RPで囲まれる図形をAとする。xyz空間においてAをx軸の周りに1回転して得られる立体の体積V(r)を求めよ。ただし答えにh(r)を用いてもよい。
(4)(3)の最大値を与えるrを求めよ。また、そのrをr(a)とおいたとき、
$\displaystyle\lim_{a \to \infty}(r(a)-a)$を求めよ。

2023名古屋大学理系過去問
この動画を見る 

福田の数学〜2023年共通テスト速報〜数学IIB第2問微分積分〜円錐に内接する円柱の体積の最大と桜の開花予想

アイキャッチ画像
単元: #数A#数Ⅱ#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#微分法と積分法#不定積分・定積分#面積、体積#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 福田次郎
問題文全文(内容文):
第2問
[1](1)kを正の定数とし、次の3次関数を考える。
$f(x)=x^2(k-x)$
y=f(x)のグラフとx軸との共有点の座標は(0, 0)と($\boxed{\boxed{\ \ ア\ \ }}$, 0)である。
f(x)の導関数f'(x)は
f'(x)=$\boxed{\ \ イウ\ \ }x^2+\boxed{\ \ エ\ \ }kx$
である。
x=$\boxed{\boxed{\ \ オ\ \ }}$のとき、f(x)は極小値$\boxed{\boxed{\ \ カ\ \ }}$をとる。
x=$\boxed{\boxed{\ \ キ\ \ }}$のとき、f(x)は極大値$\boxed{\boxed{\ \ ク\ \ }}$をとる。
また、0<x<kの範囲においてx=$\boxed{\boxed{\ \ キ\ \ }}$のときf(x)は最大となることがわかる。

$\boxed{\boxed{\ \ ア\ \ }}$, $\boxed{\boxed{\ \ オ\ \ }}$~$\boxed{\boxed{\ \ ク\ \ }}$ の解答群(同じものを繰り返し選んでもよい。)
⓪0 ①$\frac{1}{3}k$ ②$\frac{1}{2}k$ ③$\frac{2}{3}k$ 
④k ⑤$\frac{3}{2}k$ ⑥$-4k^2$ ⑦$\frac{1}{8}k^2$ 
⑧$\frac{2}{27}k^3$ ⑨$\frac{4}{27}k^3$ ⓐ$\frac{4}{9}k^3$ ⓑ$4k^3$

(2)後の図のように底面が半径9の円で高さが15の円錐に内接する円柱を考える。円柱の底面の半径と体積をそれぞれx, Vとする。Vをxの式で表すと
V=$\frac{\boxed{\ \ ケ\ \ }}{\boxed{\ \ コ\ \ }}\pi x^2(\boxed{\ \ サ\ \ }-x)$(0<x<9)
である。(1)の考察より、x=$\boxed{\ \ シ\ \ }$のときVは最大となることがわかる。Vの最大値は$\boxed{\ \ スセソ\ \ }\pi$である。

[2](1)定積分$\displaystyle\int_0^{30}(\frac{1}{5}x+3)dx$の値は$\boxed{\ \ タチツ\ \ }$である。
また、関数$\displaystyle\frac{1}{100}x^2-\frac{1}{6}x+5$の不定積分は
$\displaystyle\int(\frac{1}{100}x^2-\frac{1}{6}x+5)dx$=$\displaystyle\frac{1}{\boxed{\ \ テトナ\ \ }}x^3-\frac{1}{\boxed{\ \ ニヌ\ \ }}x^2+\boxed{\ \ ネ\ \ }x+C$である。ただし、Cは積分定数とする。
(2)ある地域では、毎年3月頃「ソメイヨシノ(桜の種類)の開花予想日」が話題になる。太郎さんと花子さんは、開花日時を予想する方法の一つに、2月に入ってからの気温を時間の関数とみて、その関数を積分した値をもとにする方法があることを知った。ソメイヨシノの開花日時を予想するために、二人は図1の6時間ごとの気温の折れ線グラフを見ながら、次のように考えることにした。(※図1は動画参照)
xの値の範囲を0以上の実数全体として、2月1日午前0時から24x時間経った時点をx日後とする。(例えば、10.3日後は2月11日午前7時12分を表す。)また、x日後の気温をy℃とする。このとき、yはxの関数であり、これをy=f(x)とおく。ただし、yは負にはならないものとする。
気温を表す関数f(x)を用いて二人はソメイヨシノの開花日時を次の設定で考えることにした。
設定:正の実数tに対して、f(x)を0からtまで積分した値をS(t)とする。すなわち、S(t)=$\displaystyle\int_0^tf(x)dx$とする。このS(t)が400に到達したとき、ソメイヨシノが開花する。
設定のもと、太郎さんは気温を表す関数y=f(x)のグラフを図2(※動画参照)のように直線とみなしてソメイヨシノの開花日時を考えることにした。
(i)太郎さんは
$f(x)=\displaystyle\frac{1}{5}x+3$ (x ≧0)
として考えた。このとき、ソメイヨシノの開花日時は2月に入ってから$\boxed{\boxed{\ \ ノ\ \ }}$となる。
$\boxed{\boxed{\ \ ノ\ \ }}$の解答群
⓪30日後 ①35日後 ②40日後 
③45日後 ④50日後 ⑤55日後 
⑥60日後 ⑦65日後
(ii)太郎さんと花子さんは、2月に入ってから30日後以降の気温について話をしている。
太郎:1次関数を用いてソメイヨシノの開花日時を求めてみたよ。
花子:気温の上がり方から考えて、2月に入ってから30日後以降の気温を表す関数が2次関数の場合も考えて見ようか。
花子さんは気温を表す関数f(x)を、0≦x≦30のときは太郎さんと同じように
f(x)=$\frac{1}{5}x+3$ ...①
とし、x≧30のときは
f(x)=$\frac{1}{100}x^2-\frac{1}{6}x+5$ ...②
として考えた。なお、x=30のとき①の右辺の値と②の右辺の値は一致する。花子さんの考えた式を用いて、ソメイヨシノの開花日時を考えよう。(1)より
$\displaystyle\int_0^{30}(\frac{1}{5}x+3)dx$=$\boxed{\ \ タチツ\ \ }$
であり
$\displaystyle\int_{30}^{40}(\frac{1}{100}x^2-\frac{1}{6}x+5)dx$=115
となることがわかる。
また、x ≧30の範囲においてf(x)は増加する。よって
$\displaystyle\int_{30}^{40}f(x)dx$ $\boxed{\boxed{\ \ ハ\ \ }}$ $\displaystyle\int_{40}^{50}f(x)dx$
であることがわかる。以上より、ソメイヨシノの開花日時は2月に入ってから$\boxed{\boxed{\ \ ヒ\ \ }}$となる。

2023共通テスト過去問
この動画を見る 

名古屋大 積分 面積公式の証明 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#名古屋大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
名古屋大学過去問題
$C:y=x^3-3x^2+2x$
原点を通り、原点以外でCと接する直線l
lとCで囲まれた部分の面積
この動画を見る 
PAGE TOP