早稲田 整数問題 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

早稲田 整数問題 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
早稲田大学過去問題
m,nは自然数。p,qは素数(p<q)
1~nまでの自然数の中でnと互いに素である自然数の個数をf(n)とする。
(1)$f(pq)=24$となるp,qを求めよ。
(2)$f(2^m3^n)$をm,nで表せ。
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
早稲田大学過去問題
m,nは自然数。p,qは素数(p<q)
1~nまでの自然数の中でnと互いに素である自然数の個数をf(n)とする。
(1)$f(pq)=24$となるp,qを求めよ。
(2)$f(2^m3^n)$をm,nで表せ。
投稿日:2018.06.28

<関連動画>

AkiyaMath様の作成問題① 初コラボ #整数問題 #3次方程式の応用

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$k$:整数
3次方程式
$4x^3-(k+3)x+2k+1=0$の解になる2以上の有理数の総和を求めよ。
この動画を見る 

華麗な別解

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n^2+n+1$は$9$の倍数でないことを示せ.
この動画を見る 

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$p,q$は素数であり,$n$は自然数とする.これを解け.
$p^2+pq+q^2=n^2$
この動画を見る 

福田の数学〜慶應義塾大学2023年薬学部第1問(1)〜素因数分解と変数の値

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)整式X=6$a^3bc$+11$a^2b^2c$+3$ab^3c$がある。
(i)Xを因数分解するとX=$\boxed{\ \ ア\ \ }$である。
(ii)X=6270 を満たす(a,b,c)の組を全て求めると、(a,b,c)=$\boxed{\ \ イ\ \ }$である。ただし、a,b,cはそれぞれ2以上の整数とする。

2023慶應義塾大学薬学部過去問
この動画を見る 

2023高校入試数学解説46問目 二次方程式の応用 灘高校 整数問題

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#数A#2次関数#2次方程式と2次不等式#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
xの方程式$x^2+x-n+1 = 0$が整数解をもつとき
$n-2023$の絶対値が最小となる整数nは?

2023 灘高等学校
この動画を見る 
PAGE TOP