早稲田 整数問題 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

早稲田 整数問題 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
早稲田大学過去問題
m,nは自然数。p,qは素数(p<q)
1~nまでの自然数の中でnと互いに素である自然数の個数をf(n)とする。
(1)$f(pq)=24$となるp,qを求めよ。
(2)$f(2^m3^n)$をm,nで表せ。
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
早稲田大学過去問題
m,nは自然数。p,qは素数(p<q)
1~nまでの自然数の中でnと互いに素である自然数の個数をf(n)とする。
(1)$f(pq)=24$となるp,qを求めよ。
(2)$f(2^m3^n)$をm,nで表せ。
投稿日:2018.06.28

<関連動画>

自作 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$10^{2020}-1$を$3^5$で割った余りを求めよ.
この動画を見る 

【数A】整数の性質:aを自然数とする。a+2は3の倍数であり、a+4は7の倍数であるとき、a+11は21の倍数であることを証明しましょう。

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
教材: #高校ゼミスタンダード#高校ゼミスタンダード数A#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
aを自然数とする。a+2は3の倍数であり、a+4は7の倍数であるとき、a+11は21の倍数であることを証明しなさい。
この動画を見る 

整数問題が苦手な人必見!大事な考えが詰まった良問!【お茶の水女子大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(1)$k^2+2$が素数となるような素数$k$をすべて見つけよ。また,それ以外にないことを示せ。
(2)整数$l$が5で割り切れないとき,$l^4-1$が5で割り切れることを示せ。

お茶の水女子大過去問
この動画を見る 

ただの分数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \dfrac{3}{m}+\dfrac{4}{n}=\dfrac{1}{12}$,自然数(m,n)をすべて求めよ.
ただし,$\dfrac{3}{m},\dfrac{4}{m}$は既約分数である.
この動画を見る 

【数A】一次不定方程式を合同式(mod)で解くステップ【解法の解説】

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数A】一次不定方程式を合同式(mod)で解くステップ紹介動画です
-----------------
$42x+29y=2$の整数解をすべて求めよ
$37x+97y=7$の整数解をすべて求めよ
この動画を見る 
PAGE TOP