10進数に変換せずに答えを出そう! - 質問解決D.B.(データベース)

10進数に変換せずに答えを出そう!

問題文全文(内容文):
$
\begin{eqnarray}
11111(7)を6進法で表せ
\end{eqnarray}
$
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$
\begin{eqnarray}
11111(7)を6進法で表せ
\end{eqnarray}
$
投稿日:2023.10.16

<関連動画>

指数不等式

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$3^x・25^{\frac{1}{x}}\leqq 45$
この動画を見る 

福田の数学〜慶應義塾大学2022年薬学部第2問〜二項定理と数列の部分和

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 数列\left\{a_n\right\}の初項から第n項までの和S_n、数列\left\{b_n\right\}の初項から第n項までの和T_n\\
はそれぞれ\\
S_n=\sum_{k=1}^n {}_n \mathrm{ C }_k, T_n=\sum_{k=1}^n k・{}_n \mathrm{ C }_k\\
で表される。\\
(1)x \gt y \geqq 1を満たす自然数x,yについて、\\
{}_x \mathrm{ C }_y={}_{x-1} \mathrm{ C }_y+{}_i \mathrm{ C }_j, y・{}_x \mathrm{ C }_y=x・{}_p \mathrm{ C }_q,\\
が成り立つ。i,j,p,qをそれぞれx,yを用いて表すと、i=\boxed{\ \ ス\ \ },j=\boxed{\ \ セ\ \ },\\
p=\boxed{\ \ ソ\ \ },q=\boxed{\ \ タ\ \ }である。\\
(2)a_2,b_4の値をそれぞれ求めるとa_2=\boxed{\ \ チ\ \ },b_4=\boxed{\ \ ツ\ \ }である。\\
(3)S_n,a_nをそれぞれnの式で表すと、S_n=\boxed{\ \ テ\ \ },a_n=\boxed{\ \ ト\ \ }である。\\
(4)b_nをnの式で表すと、b_n=\boxed{\ \ ナ\ \ }である。
\end{eqnarray}

2022慶應義塾大学薬学部過去問
この動画を見る 

東京医科大 3乗根の不等式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \sqrt[3]{n+1}-\sqrt[3]{n}<\dfrac{1}{48}$を満たす最小の自然数nを求めよ.

東京医科大過去問
この動画を見る 

福田のわかった数学〜高校2年生011〜不等式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 不等式の証明
$|x| \leqq 1,|y| \leqq 1$のとき、不等式
$0 \leqq x^2+y^2-2x^2y^2+2xy\sqrt{1-x^2}\sqrt{1-y^2} \leqq 1$
が成り立つことを示せ。
この動画を見る 

北大の良問!解けますか?【数学 入試問題】【北海道大学】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$k$を実数の定数とし、$f(x)=x^3-(2k-1)x^2+(k^2-k+1)x$
$-k+1$とする。

(1)$f(k-1)$の値を求めよ。
(2)$\vert k \vert <2$のとき、不等式$f(x)≧0$を解け。

北海道大過去問
この動画を見る 
PAGE TOP