積の微分、合成関数の微分、商の微分の導出 - 質問解決D.B.(データベース)

積の微分、合成関数の微分、商の微分の導出

問題文全文(内容文):
積の微分,合成関数の微分,商の微分の導出に関して解説していきます.
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
積の微分,合成関数の微分,商の微分の導出に関して解説していきます.
投稿日:2017.12.09

<関連動画>

福田の数学〜早稲田大学2022年人間科学部第2問〜三角不等式の解

アイキャッチ画像
単元: #大学入試過去問(数学)#三角関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{2}}2\sin\theta+\sin2\theta+2\sin3\theta-2\sin2\theta\cos\theta \gt 0\hspace{10pt}(0 \lt \theta \lt \pi)$
を満たす$\theta$の範囲は
$0 \lt \theta \lt \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\ \pi,\ \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\ \pi \lt \theta \lt \pi$
である。

2022早稲田大学人間科学部過去問
この動画を見る 

福田のおもしろ数学463〜2定点を見込む角を最大にする方法

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

図のように点$P$を$y$軸の正の部分を

動かすとき、

$\theta$が最大となる点$P$の位置は?

$2$通りの解答を考えて下さい。

図は動画内参照
この動画を見る 

【数Ⅲ】【微分とその応用】関数の最大と最小4 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数 $ \displaystyle f(x)= \frac{ax^2+bx+1}{x^2+1}$ が $x=2$で極小値$-1$をとるように、定数$a,b$の値を定めよ。また、$f(x)$の極大値を求めよ。
この動画を見る 

【高校数学】数Ⅲ-106 媒介変数表示された関数の導関数

アイキャッチ画像
単元: #平面上の曲線#微分とその応用#色々な関数の導関数#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$x$と$y$の関係が次の式で与えられるとき、
$\dfrac{dy}{dx}$を$t$で表せ。

①$x=\dfrac{1}{1+t^2},y=\dfrac{t}{1+t^2}$

②$x=a(t-\sin t),y=(1-\cos t)\quad (a\gt 0)$
この動画を見る 

大学入試問題#240 防衛医科大学(2020) #曲線の長さ

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#防衛医科大学
指導講師: ますただ
問題文全文(内容文):
$0 \leqq t \leqq \pi$
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=3\cos\ t-\cos\ 3t \\
y=3\sin\ t-\sin\ 3t
\end{array}
\right.
\end{eqnarray}$
で表される曲線の長さを求めよ。

出典:2020年防衛医科大学 入試問題
この動画を見る 
PAGE TOP