積の微分、合成関数の微分、商の微分の導出 - 質問解決D.B.(データベース)

積の微分、合成関数の微分、商の微分の導出

問題文全文(内容文):
積の微分,合成関数の微分,商の微分の導出に関して解説していきます.
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
積の微分,合成関数の微分,商の微分の導出に関して解説していきます.
投稿日:2017.12.09

<関連動画>

東京電機大 最大値・最小値

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#2次関数とグラフ#三角関数#三角関数とグラフ#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
x,yを実数とする.
$x^2+2y^2+4y=0$を満たすとき,$2x-y$の最大値・最小値を求めよ.

東京電機大過去問
この動画を見る 

福田の数学〜京都大学2023年理系第4問〜複雑な関数の最大値と最小値

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 次の関数f(x)の最大値と最小値を求めよ。
f(x)=$e^{-x^2}$+$\frac{1}{4}x^2$+1+$\frac{1}{e^{-x^2}+\frac{1}{4}x^2+1}$ (-1≦x≦1)
ただし、eは自然対数の底であり、その値はe=2.71...である。

2023京都大学理系過去問
この動画を見る 

埼玉大 微分積分 三次関数極値の差 ヨビノリ技

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3+ax^2+bx$は原点で$y=-x$に接し、
$($極大値$)-($極小値$)=4,$
$($極大値$)+($極小値$) \gt 0$である。
$a,b$の値を求めよ

出典:2018年埼玉大学 過去問
この動画を見る 

【数Ⅲ】微分法:指数対数の微分、演習

アイキャッチ画像
単元: #微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数を微分しよう
(1)$y=\log(x^2+1)$  (2)$y=\log_2\vert 2x\vert $
(3)$y=\log\vert \tan x\vert $ (4)$y=\log\vert \sin x\vert$
(5)$y=e^(2x)$    (6)$y=2^(-3x)$
(7)$y=e^x \sin x$ (8)$y=\log\dfrac{x}{x}$
(9)$y=(\log x)^3$   (10)$y=\log_2\vert \cos x\vert $
(11)$y=\log(\log x)$ (12)$y=a-(-2x+1)$
(13)$y=2^{\sin x}$   (14)$y=\log_3\dfrac{x}{3^x}$
この動画を見る 

#京都大学1965#微分_28#元高校教員

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)=\displaystyle \frac{1}{x^3}$において
$f'(1)$を定義に従って求めよ。

出典:1965年京都大学
この動画を見る 
PAGE TOP