【数B】漸化式:東大1995年 タイルの敷き詰め - 質問解決D.B.(データベース)

【数B】漸化式:東大1995年 タイルの敷き詰め

問題文全文(内容文):
2辺の長さが1と2の長方形と1辺の長さが2の正方形の2種類のタイルがある。縦2,横nの長方形の部屋をこれらのタイルで過不足なく敷き詰めることを考える。その並べ方の総数をA[n]で表す。ただし,nは正の整数である。たとえば$ A_1=1, A_2=3, A_3=5$ である。このとき,以下の問いに答えよう。
(1)$n≧3$のとき,$A_n$を$A_{n-1},A_{n-2}$を用いて表そう。
(2)$A_n$をnで表そう。
チャプター:

0:00 オープニング
0:05 問題文
0:20 A[1]=1, A[2]=3, A[3]=5の考え方
1:47 問題解説(1)
3:03 問題解説(2):解が2つの三項間漸化式
5:06 名言

単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2辺の長さが1と2の長方形と1辺の長さが2の正方形の2種類のタイルがある。縦2,横nの長方形の部屋をこれらのタイルで過不足なく敷き詰めることを考える。その並べ方の総数をA[n]で表す。ただし,nは正の整数である。たとえば$ A_1=1, A_2=3, A_3=5$ である。このとき,以下の問いに答えよう。
(1)$n≧3$のとき,$A_n$を$A_{n-1},A_{n-2}$を用いて表そう。
(2)$A_n$をnで表そう。
投稿日:2021.04.21

<関連動画>

福田の数学〜早稲田大学2023年教育学部第1問(3)〜連立漸化式と複素数平面

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#数列#漸化式#複素数平面#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
$x_0=0,y_0=-1$のとき、非負整数$n\geqq 0$に対して、
$x_{n+1}=(\cos \frac{3\pi}{11})x_n-(\sin \frac{3\pi}{11)}y_n$
$y_{n+1}=(\cos \frac{3\pi}{11})x_n+(\sin \frac{3\pi}{11)}y_n$
のとき、$x_n$が最小となる最初のnを求めよ。

2023早稲田大学教育学部過去問
この動画を見る 

佐賀大 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
佐賀大学過去問題
n自然数
(1)$n! \geqq 2^{n-1}$
(2)$1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!} < 3$
 証明せよ
この動画を見る 

福田のおもしろ数学579〜自然対数の底が階乗の逆数の和で表せる証明

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$a_n=\displaystyle \int_{0}^{1} \dfrac{(1-x)^{n-1}}{(n-1)!}e^x dx$を利用して

$e=1+\dfrac{1}{1!}+\dfrac{1}{2!}+\dfrac{1}{3!}+\cdots$

を証明して下さい。
     
この動画を見る 

福田の数学〜大阪大学2025理系第5問〜確率漸化式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

投げたときに表と裏の出る確率が

それぞれ$\dfrac{1}{2}$のコインがある。

$A,B,C$の$3$文字を$BAC$のように$1$個ずつ

すべて並べて得られる文字列に対して、

コインを投げて次の操作を行う。

・表がで出たら文字列の左から$1$文字目と
 $2$文字目を入れかえる。

・裏がで出たら文字列の左から$2$文字目と
 $3$文字目を入れかえる。

例えば、文字列が$BAC$であるときに、

$2$回続けてコインを投げて表、裏の順に出た

とすると、文字列は$BAC$から$ABC$を経て

$ACB$となる。

最初の文字列は$ABC$であるとする。

コインを$n$回続けて投げたあとの文字列が

$ABC$である確率を$p_n$とし、

$BCA$である確率を$q_n$とする。

(1)$k$を正の整数とするとき、

$p_{2k}-q_{2k}$を求めよ。

(2)$n$を正の整数とするとき、

$p_n$を求めよ。

$2025$年大阪大学理系過去問題
この動画を見る 

ただの分数の和

アイキャッチ画像
単元: #数列とその和(等差・等比・階差・Σ)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\frac{1}{3}$+$\frac{1}{6}$+$\frac{1}{10}$+$\frac{1}{15}$+$\frac{1}{21}$+$\frac{1}{28}$+$\cdots$+$\frac{□}{□}$=?
*分母の数は階差数列
この動画を見る 
PAGE TOP