福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題4。数列の問題。 - 質問解決D.B.(データベース)

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題4。数列の問題。

問題文全文(内容文):
\begin{eqnarray}
以下のように、歩行者と自転車が自宅を出発して移動と停止を繰り返してい\\
る。歩行者と自転車の動きについて、数学的に考えてみよう。\\
自宅を原点とする数直線を考え、歩行者と自転車をその数直線上を動く点とみ\\
なす。数直線上の点の座標がyであるとき、その点は位置にあるということに\\
する。また、歩行者が自宅を出発してからx分経過した時点を時刻xと表す。歩\\
行者は時刻0に自宅を出発し、正の向きに毎分1の速さで歩き始める。自転車は\\
時刻2に自宅を出発し、毎分2の速さで歩行者を追いかける。自転車が歩行者に\\
追いつくと、歩行者と自転車はともに1分だけ停止する。その後、歩行者は再び\\
正の向きに毎分1の速さで歩き出し、自転車は毎分2の速さで自宅に戻る。自転\\
車は自宅に到着すると、1分だけ停止した後、再び毎分2の速さで歩行者を追い\\
かける。これを繰り返し、自転車は自宅と歩行者の間を往復する。\\
x=a_nを自転車がn回目に自宅を出発する時刻とし、y=b_nをそのときの歩\\
行者の位置とする。\\
\\
\\
(1) 花子さんと太郎さんは、数列\left\{a_n\right\}, \left\{b_n\right\}の一般項を求めるために、歩行者\\
と自転車について、時刻において位置yにいることをOを原点とする座標\\
平面上の点(x,y)で表すことにした。\\
a_1=2,b_1=2により、自転車が最初に自宅を出発するときの時刻と自転\\
車の位置を表す点の座標は(2,0)であり、その時の時刻と歩行者の位置を\\
表す点の座標は(2,2)である。また、自転車が最初に歩行者に追いつくとき\\
の時刻と位置を表す点の座標は(\boxed{\ \ ア\ \ },\boxed{\ \ ア\ \ })である。よって\\
a_2=\boxed{\ \ イ\ \ }, b_2=\boxed{\ \ ウ\ \ }\\
である。\\
\\
花子:数列\left\{a_n\right\}, \left\{b_n\right\}の一般項について考える前に、\\
(\boxed{\ \ ア\ \ },\boxed{\ \ ア\ \ })の求め方について整理してみようか。\\
太郎:花子さんはどうやって求めたの?\\
花子:自転車が歩行者を追いかけるときに、間隔が1分間に1ずつ縮まっていくこと\\
を利用したよ。\\
太郎:歩行者と自転車の動きをそれぞれ直線の方程式で表して、交点を\\
計算して求めることもできるね。\\
\\
自転車がn回目に自宅を出発するときの時刻と自転車の位置を表す点の座標\\
は(a_n,0)であり、そのときの時刻と歩行者の位置を表す点の座標は\\
(a_n,b_n)である。よって、n回目に自宅を出発した自転車が次に歩行者に\\
追いつくときの時刻と位置を表す点の座標は、a_n,b_nを用いて、\\
(\boxed{\ \ エ\ \ },\boxed{\ \ オ\ \ })と表せる。\\
\\
\\
\boxed{\ \ エ\ \ },\boxed{\ \ オ\ \ }の解答群(同じものを繰り返し選んでもよい。)\\
⓪a_n ①b_n ②2a_n\\
③a_n+b_n ④2b_n ⑤3a_n\\
⑥2a_n+b_n ⑦a_n+2b_n ⑧3b_n\\
\\
以上から、数列\left\{a_n\right\}, \left\{b_n\right\}について、自然数nに対して、関係式\\
a_{n+1}=a_n+\boxed{\ \ カ\ \ }\ b_n+\boxed{\ \ キ\ \ } \ldots①\\
b_{n+1}=3b_n+\boxed{\ \ ク\ \ } \ldots②\\
が成り立つことが分かる。まず、b_1=2と②から\\
b_n=\boxed{\ \ ケ\ \ } (n=1,2,3,\ldots)\\
を得る。この結果と、a_1=2および1から\\
a_n=\boxed{\ \ コ\ \ } (n=1,2,3,\ldots)\\
がわかる。\\
\\
\boxed{\ \ ケ\ \ }, \boxed{\ \ コ\ \ }の解答群(同じものを繰り返し選んでもよい。)\\
⓪3^{n-1}+1 ①\frac{1}{2}・3^n+\frac{1}{2}\\
②3^{n-1}+n ③\frac{1}{2}・3^n+n-\frac{1}{2}\\
④3^{n-1}+n^2 ⑤\frac{1}{2}・3^n+n^2-\frac{1}{2}\\
⑥2・3^{n-1} ⑦\frac{5}{2}・3^{n-1}-\frac{1}{2}\\
⑧2・3^{n-1}+n-1 ⑨\frac{5}{2}・3^{n-1}+n-\frac{3}{2}\\
ⓐ2・3^{n-1}+n^2-1 ⓑ\frac{5}{2}・3^{n-1}+n^2-\frac{3}{2}\\
\\
\\
(2)歩行者がy=300の位置に到着するときまでに、自転車が装甲車に追いつく\\
回数は\boxed{\ \ サ\ \ }回である。また、\boxed{\ \ サ\ \ }回目に自転車が歩行者に追いつく\\
時刻は、x=\boxed{\ \ シスセ\ \ }\ である。
\end{eqnarray}
単元: #大学入試過去問(数学)#数列#漸化式#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
以下のように、歩行者と自転車が自宅を出発して移動と停止を繰り返してい\\
る。歩行者と自転車の動きについて、数学的に考えてみよう。\\
自宅を原点とする数直線を考え、歩行者と自転車をその数直線上を動く点とみ\\
なす。数直線上の点の座標がyであるとき、その点は位置にあるということに\\
する。また、歩行者が自宅を出発してからx分経過した時点を時刻xと表す。歩\\
行者は時刻0に自宅を出発し、正の向きに毎分1の速さで歩き始める。自転車は\\
時刻2に自宅を出発し、毎分2の速さで歩行者を追いかける。自転車が歩行者に\\
追いつくと、歩行者と自転車はともに1分だけ停止する。その後、歩行者は再び\\
正の向きに毎分1の速さで歩き出し、自転車は毎分2の速さで自宅に戻る。自転\\
車は自宅に到着すると、1分だけ停止した後、再び毎分2の速さで歩行者を追い\\
かける。これを繰り返し、自転車は自宅と歩行者の間を往復する。\\
x=a_nを自転車がn回目に自宅を出発する時刻とし、y=b_nをそのときの歩\\
行者の位置とする。\\
\\
\\
(1) 花子さんと太郎さんは、数列\left\{a_n\right\}, \left\{b_n\right\}の一般項を求めるために、歩行者\\
と自転車について、時刻において位置yにいることをOを原点とする座標\\
平面上の点(x,y)で表すことにした。\\
a_1=2,b_1=2により、自転車が最初に自宅を出発するときの時刻と自転\\
車の位置を表す点の座標は(2,0)であり、その時の時刻と歩行者の位置を\\
表す点の座標は(2,2)である。また、自転車が最初に歩行者に追いつくとき\\
の時刻と位置を表す点の座標は(\boxed{\ \ ア\ \ },\boxed{\ \ ア\ \ })である。よって\\
a_2=\boxed{\ \ イ\ \ }, b_2=\boxed{\ \ ウ\ \ }\\
である。\\
\\
花子:数列\left\{a_n\right\}, \left\{b_n\right\}の一般項について考える前に、\\
(\boxed{\ \ ア\ \ },\boxed{\ \ ア\ \ })の求め方について整理してみようか。\\
太郎:花子さんはどうやって求めたの?\\
花子:自転車が歩行者を追いかけるときに、間隔が1分間に1ずつ縮まっていくこと\\
を利用したよ。\\
太郎:歩行者と自転車の動きをそれぞれ直線の方程式で表して、交点を\\
計算して求めることもできるね。\\
\\
自転車がn回目に自宅を出発するときの時刻と自転車の位置を表す点の座標\\
は(a_n,0)であり、そのときの時刻と歩行者の位置を表す点の座標は\\
(a_n,b_n)である。よって、n回目に自宅を出発した自転車が次に歩行者に\\
追いつくときの時刻と位置を表す点の座標は、a_n,b_nを用いて、\\
(\boxed{\ \ エ\ \ },\boxed{\ \ オ\ \ })と表せる。\\
\\
\\
\boxed{\ \ エ\ \ },\boxed{\ \ オ\ \ }の解答群(同じものを繰り返し選んでもよい。)\\
⓪a_n ①b_n ②2a_n\\
③a_n+b_n ④2b_n ⑤3a_n\\
⑥2a_n+b_n ⑦a_n+2b_n ⑧3b_n\\
\\
以上から、数列\left\{a_n\right\}, \left\{b_n\right\}について、自然数nに対して、関係式\\
a_{n+1}=a_n+\boxed{\ \ カ\ \ }\ b_n+\boxed{\ \ キ\ \ } \ldots①\\
b_{n+1}=3b_n+\boxed{\ \ ク\ \ } \ldots②\\
が成り立つことが分かる。まず、b_1=2と②から\\
b_n=\boxed{\ \ ケ\ \ } (n=1,2,3,\ldots)\\
を得る。この結果と、a_1=2および1から\\
a_n=\boxed{\ \ コ\ \ } (n=1,2,3,\ldots)\\
がわかる。\\
\\
\boxed{\ \ ケ\ \ }, \boxed{\ \ コ\ \ }の解答群(同じものを繰り返し選んでもよい。)\\
⓪3^{n-1}+1 ①\frac{1}{2}・3^n+\frac{1}{2}\\
②3^{n-1}+n ③\frac{1}{2}・3^n+n-\frac{1}{2}\\
④3^{n-1}+n^2 ⑤\frac{1}{2}・3^n+n^2-\frac{1}{2}\\
⑥2・3^{n-1} ⑦\frac{5}{2}・3^{n-1}-\frac{1}{2}\\
⑧2・3^{n-1}+n-1 ⑨\frac{5}{2}・3^{n-1}+n-\frac{3}{2}\\
ⓐ2・3^{n-1}+n^2-1 ⓑ\frac{5}{2}・3^{n-1}+n^2-\frac{3}{2}\\
\\
\\
(2)歩行者がy=300の位置に到着するときまでに、自転車が装甲車に追いつく\\
回数は\boxed{\ \ サ\ \ }回である。また、\boxed{\ \ サ\ \ }回目に自転車が歩行者に追いつく\\
時刻は、x=\boxed{\ \ シスセ\ \ }\ である。
\end{eqnarray}
投稿日:2022.01.22

<関連動画>

【数B】数列:漸化式の基本を解説シリーズその4 特殊解型

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
a1=2,a[n+1]+2a[n]=1で定められる数列{an}の一般項を求めよ。
この動画を見る 

いい問題

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
n自然数
$\sqrt{n}$に最も近い整数を$a_n$とする
(例)$a_3=2$,$a_{10}=3$
$\displaystyle\sum_{n=1}^{2023}\frac{1}{a_n}$を求めよ
この動画を見る 

福田の一夜漬け数学〜数列・漸化式(6)その他色々〜高校2年生

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
次の漸化式を解け。(すべてa_1=1とする)\\
a_{n+1}=\frac{a_n}{4a_n-1}\\
a_{n+1}=2\sqrt{a_n}\\
a_{n+1}=2(n+1)a_n\\
\\
\\
a_{n+1}=\frac{4a_n+8}{a_n+6}\\
\end{eqnarray}
この動画を見る 

静岡大 数学的帰納法 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#数列#数学的帰納法#静岡大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
静岡大学過去問題
n自然数
(1)$4^{n+1}+5^{2n-1}$は21で割り切れることを証明
(2)次の条件を満たす定数でない多項式f(x)を推定し、その推定が正しいことを証明せよ。
(a)f(4)=21
(b)すべての自然数nに対し$x^{n+1}+(x+1)^{2n-1}$はf(x)で割り切れる。
この動画を見る 

【数B・Ⅲ】漸化式と極限:連立漸化式:数列{x[n]},{y[n]}をx[1]=y[1]=1, x[n+1]=(2/3)x[n]+(1/6)y[n], y[n+1]=(1/3)x[n]+(5/6)y…

アイキャッチ画像
単元: #数列#漸化式#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
数列{x[n]},{y[n]}をx[1]=y[1]=1, x[n+1]=(2/3)x[n]+(1/6)y[n], y[n+1]=(1/3)x[n]+(5/6)y[n]で定めるとき、
(1)x[n+1]+αy[n+1]=β(x[n]+αy[n])を満たすα,βの組を2組求めよう。
(2)数列{x[n]},{y[n]}の一般項を求めよう。
(3)数列{x[n]},{y[n]}の極限を求めよう。
この動画を見る 
PAGE TOP