基本問題 - 質問解決D.B.(データベース)

基本問題

問題文全文(内容文):
$Z+\dfrac{1}{Z}=-\sqrt{3}$のとき,
$Z^{2023}+\dfrac{1}{Z^{2023}}$の値を求めよ。

単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$Z+\dfrac{1}{Z}=-\sqrt{3}$のとき,
$Z^{2023}+\dfrac{1}{Z^{2023}}$の値を求めよ。

投稿日:2023.03.16

<関連動画>

大学入試問題#235 自治医科大学(2014) 複素数

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#自治医科大学
指導講師: ますただ
問題文全文(内容文):
$\omega=\displaystyle \frac{-1+\sqrt{ 3 }i}{2}$のとき
$\omega^{20}+\omega^{19}+\omega^8+\omega^6+\omega^4+\omega^3$の値を求めよ。

出典:2012年自治医科大学 入試問題
この動画を見る 

04大阪府教員採用試験(数学:3番 複素数)

アイキャッチ画像
単元: #複素数平面#複素数平面#その他#数学(高校生)#数C#教員採用試験
指導講師: ますただ
問題文全文(内容文):
3⃣ $Z_1,Z_2 \in \mathbb{C}$
$|Z_1|=|Z_2|=|Z_1+Z_2|=1$ ⇒ $Z_1^{3}=Z_2^{3}$を示せ
この動画を見る 

福田のおもしろ数学263〜複素数平面上の3点が正三角形をなす必要十分条件

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
複素数平面上の$3$点$α,β,γ$が正三角形になるための必要十分条件は$α^2+β^2+γ^2=αβ+βγ+γα$であることを証明して下さい。
この動画を見る 

弘前大 三角関数 正十角形の面積 高校数学 大学入試 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数平面#三角関数#複素数#三角関数とグラフ#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
弘前大学過去問題
(1)$sin5θ=16sin^5θ-20sin^3θ+5sinθ$を示せ。

(2)半径1の円に内接する正十角形の面積を求めよ。
この動画を見る 

#32 数検1級1次 過去問 複素数の方程式

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#複素数平面#複素数#複素数平面#数学検定#数学検定1級#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$z:$複素数
方程式$z^2-z+i\bar{ z }=i$を解け。
この動画を見る 
PAGE TOP