福田の数学〜中央大学2023年経済学部第1問(2)〜同じものを含む順列 - 質問解決D.B.(データベース)

福田の数学〜中央大学2023年経済学部第1問(2)〜同じものを含む順列

問題文全文(内容文):
$\Large\boxed{1}$ (2)E, C, O, N, O, M, I, C, Sの9文字を並べ替えて作ることのできる文字列の個数はC, O, M, M, E, R, C, Eの8文字を並べ替えて作ることのできる文字列の個数と比べて何倍あるか。
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)E, C, O, N, O, M, I, C, Sの9文字を並べ替えて作ることのできる文字列の個数はC, O, M, M, E, R, C, Eの8文字を並べ替えて作ることのできる文字列の個数と比べて何倍あるか。
投稿日:2023.09.27

<関連動画>

福田の数学〜早稲田大学2025社会科学部第2問〜階差数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

数列$\{a_n\}$の階差数列を$\{b_n\}$、すなわち

$b_n=a_{n+1}-a_n \quad (n=1,2,3,\cdots)$

とする。次の問いに答えよ。

(1)$a_n=-\dfrac{1}{n}$のとき、

$b_n$を$n$の式で表す。

(2)$b_n=\dfrac{1}{n(n+1)}$のとき、

$a_n$を$n$の式で表せ。ただし、$a_1=1$とする。

(3)数列$\{b_n\}$が以下を満たすとき、

$a_n$を$n$の式で表せ。ただし、$a_1=1$とする。

$\begin{eqnarray}
\left\{
\begin{array}{l}
b_1=1 \\
b_n=n(n+1) \quad (n\geqq 2)
\end{array}
\right.
\end{eqnarray}$

$2025$念早稲田大学社会科学部過去問題
この動画を見る 

【高校数学】 数B-91 漸化式⑤

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の条件で定められる数列$\{a_n\}$の一般項を求めよう.

①$a_1=2,\dfrac{1}{a_{n+1}}=\dfrac{1}{a_n}+3^{n-1}$

②$a_1=\dfrac{1}{4},a_{n+1}=\dfrac{a_n}{3a_n+1}$
この動画を見る 

東京海洋大 漸化式と3次関数

アイキャッチ画像
単元: #数列#漸化式#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数B#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数とする.
$a_1=1$であり,$a_{n+1}=27^{n^2-3n-9}a_n$とする.

(1)一般項$a_n$を求めよ.
(2)$a_n$が最小となる値を求めよ.

2013東京海洋大過去問
この動画を見る 

【数B】数列:対数型の漸化式! a1=1,a[n+1]=√2a[n]で定められる数列{an}の一般項を求めよ。

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a1=1,a_{n+1}=\sqrt2{a_n}$で定められる数列${an}$の一般項を求めよ。
この動画を見る 

福田の数学〜明治大学2024全学部統一IⅡAB第3問〜変わった規則の数列と点列と面積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#複素数平面#数列#平面上のベクトルと内積#漸化式#複素数平面#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle
\fcolorbox{#000}{ #fff }{3}
整数からなる数列\{a_n\} \ (n=1,2,3,...)を次の規則1、2により定める。
$

$\displaystyle
(規則1)a_1=0 , \ a_2=1である。
$

$
\displaystyle(規則2)k=1,2,3,...について、初項から第2^{k+1}項までに値のそれぞれに1を加え、\\ それらすべてを逆の順序にしたものが第2^k+1項から第2^{k+1}項までの値と定める。
$

$\displaystyle
(1)以上の規則により得られる数列\{ a_n \}において、a_{10}=\fcolorbox{#000}{ #fff }{$ア \ \ \ $}であり、a_{16}=\fcolorbox{#000}{ #fff }{$イ \ \ \ $}である。 \\
また第2^k項(k=5,6,7,...)の値は\fcolorbox{#000}{ #fff }{$ウ \ \ \ $}である。
$

$\displaystyle
(2)a_{518}を求めたい。上記の規則2によれば、1 \leqq i \leqq 2^kを満たすiに対して、 \\
a_iに1を加えた数と第
\fcolorbox{#000}{ #fff }{$エ \ \ \ $}
項が、等しいと定めている。 \\
実際に、2^b < 518 \leqq 2^{b+1}を満たすような整数bは
\fcolorbox{#000}{ #fff }{$オ \ \ \ $}
であることに注意すれば、a_{518}=
\fcolorbox{#000}{ #fff }{$カ \ \ \ $}
である。
$

$\displaystyle
(3)点O_k(k=1,2,3,...)を次のように定める。\\
数列 \{ a_n \}の初項から第2^k項に着目し、a_nを4で割った余りにしたがって、ベクトル\vec{e_n}を
$

$
\vec{e_n}=
\left\{
\begin{array}{l}
(1,0) \quad a_nが4の倍数のとき \\
(0,1) \quad a_nを4で割った余りが1のとき \\
(-1,0) \quad a_nが4で割った余りが2のとき \\
(0,-1) \quad a_nを4で割った余りが3のとき
\end{array}
\right.
$

$
\displaystyle
によって定め、\\
点P_1の位置ベクトルを\overrightarrow{OP_1}=\vec{e_1}+\vec{e_2}とし、\\
点P_k(k=2,3,4,...)の位置ベクトルを\\
\overrightarrow{OP_k}=\vec{e_1}+\vec{e_2}+\vec{e_3}+...+\vec{e_{2^k}}とする。\\
たとえば、 \\
\overrightarrow{OP_w}=(1,0)+(0,1)+(-1,0)+(0,1)=(0,2)である。\\
\{a_n\}を定める規則に注目すると、 \\
\overrightarrow{OP_{k+1}} は \overrightarrow{OP_k} の\fcolorbox{#000}{ #fff }{$キ \ \ \ $}倍であり、\\
\angle P_kOP_{k+1}=\fcolorbox{#000}{ #fff }{$ク \ \ \ $}である。\\
このことから\\
\overrightarrow{OP_{99}}=(\fcolorbox{#000}{ #fff }{$ケ \ \ \ $},\fcolorbox{#000}{ #fff }{$コ \ \ \ $})である。
$
この動画を見る 
PAGE TOP