福田の一夜漬け数学〜数学III 複素数平面〜京都大学の問題に挑戦 - 質問解決D.B.(データベース)

福田の一夜漬け数学〜数学III 複素数平面〜京都大学の問題に挑戦

問題文全文(内容文):
${\Large\boxed{1}}$ $w$を$0$でない複素数、$x,y$を$w+\displaystyle \frac{1}{w}=x+yi$を満たす実数とする。
(1)実数$R$は$R \gt 1$を満たす定数とする。$w$が絶対値$R$の複素数
全体を動くとき、$xy$平面上の点$(x,\ y)$の軌跡を求めよ。

(2)実数$\alpha$は$0 \lt \alpha \lt \displaystyle \frac{\pi}{2}$を満たす定数とする。$w$が偏角$\alpha$の複素数
全体を動くとき、$xy$平面上の点$(x,\ y)$の軌跡を求めよ。

京都大学過去問
単元: #大学入試過去問(数学)#複素数平面#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $w$を$0$でない複素数、$x,y$を$w+\displaystyle \frac{1}{w}=x+yi$を満たす実数とする。
(1)実数$R$は$R \gt 1$を満たす定数とする。$w$が絶対値$R$の複素数
全体を動くとき、$xy$平面上の点$(x,\ y)$の軌跡を求めよ。

(2)実数$\alpha$は$0 \lt \alpha \lt \displaystyle \frac{\pi}{2}$を満たす定数とする。$w$が偏角$\alpha$の複素数
全体を動くとき、$xy$平面上の点$(x,\ y)$の軌跡を求めよ。

京都大学過去問
投稿日:2018.06.05

<関連動画>

北里大学2021年医学部第1問(2)。複素数平面でド・モアブルの定理を利用した偏角、絶対値の計算や正三角形の残りの頂点を求める

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
(2)iを虚数単位とし、$z_1=\frac{(\sqrt3+i)^{17}}{(1+i)^{19}(1-\sqrt3i)^7}, z_2=-1+i$とする。
$z_1$の偏角$\theta$のうち、$\\0 \leqq \theta \lt 2\pi$を満たすものは$\theta=\boxed{オ}$であり、$|z_1|=\boxed{カ}$である。
複素数平面上で$z_1,z_2$を表す点をそれぞれA,Bとする。このとき線分ABを
1辺とする正三角形ABCの、頂点Cを表す複素数の実部は0または$\boxed{キ}$である。
a,bを正の整数とし、複素数$\frac{(\sqrt3+i)^7}{(1+i)^a(1-\sqrt3i)^b}$の偏角の一つが$\frac{\pi}{12}$であるとき、
a+bの最小値は$\boxed{ク}$である。

2021北里大学医学部過去問
この動画を見る 

福田の一夜漬け数学〜数学III 複素数平面〜ド・モアブルの定理(4)早稲田大学の問題に挑戦

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#数列#漸化式#複素数平面#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
複素数$z_n (n=1,2,3\cdots)$が次の式を満たしている。
$z_1=1,\ z_2=\displaystyle \frac{1}{2},$ 複素数の積$z_nz_{n+1}=\displaystyle \frac{1}{2}\left(\displaystyle \frac{1+\sqrt3i}{2}\right)^{n-1}$
このとき、$S=z_1+z_2+z_3+\cdots\cdots+z_{2002}$を求めよ。

早稲田大学過去問
この動画を見る 

中学生の知識でオイラーの公式を理解しよう Vol 9

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
中学生の知識でオイラーの公式を理解しよう Vol 9
この動画を見る 

福田の数学〜名古屋大学2024年理系第2問〜3次方程式の共通解と複素数平面

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ $c$を1より大きい実数とする。また、$i$を虚数単位として、$\alpha$=$\displaystyle\frac{1-i}{\sqrt 2}$ とおく。
複素数$z$に対して、
$P(z)$=$z^3$-$3z^2$+$(c+2)z$-$c$, $Q(z)$=$-\alpha^7z^3$+$3\alpha^6z^2$+$(c+2)\alpha z$-$c$
と定める。
(1)方程式$P(z)$=0を満たす複素数$z$をすべて求め、それらを複素数平面上に図示せよ。
(2)方程式$Q(z)$=0を満たす複素数$z$のうち実部が最大のものを求めよ。
(3)複素数$z$についての2つの方程式$P(z)$=0, $Q(z)$=0が共通解$\beta$を持つとする。そのときの$c$の値と$\beta$を求めよ。
この動画を見る 

福田の数学〜早稲田大学2023年理工学部第4問〜複素数平面上の点の軌跡

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#微分とその応用#複素数平面#図形への応用#色々な関数の導関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 複素数平面上に2点A(1), B($\sqrt 3 i$)がある。ただし、$i$は虚数単位である。
複素数zに対し$w$=$\frac{3}{z}$で表される点$w$を考える。以下の問いに答えよ。
(1)z=1, $\frac{1+\sqrt 3i}{2}$, $\sqrt 3 i$のときのwをそれぞれ計算せよ。
(2)実数tに対し、z=(1-t)+t$\sqrt 3 i$とする。$\alpha$=$\frac{3-\sqrt 3 i}{2}$について、$\alpha z$の実部を求め、さらに($w-\alpha$)($\bar{w-\alpha}$)を求めよ。
(3)wと原点を結んでできる線分Lを考える。zが線分AB上を動くとき、線分Lが通過する範囲を図示し、その面積を求めよ。
この動画を見る 
PAGE TOP