福田の一夜漬け数学〜数学III 複素数平面〜京都大学の問題に挑戦 - 質問解決D.B.(データベース)

福田の一夜漬け数学〜数学III 複素数平面〜京都大学の問題に挑戦

問題文全文(内容文):
${\Large\boxed{1}}$ $w$を$0$でない複素数、$x,y$を$w+\displaystyle \frac{1}{w}=x+yi$を満たす実数とする。
(1)実数$R$は$R \gt 1$を満たす定数とする。$w$が絶対値$R$の複素数
全体を動くとき、$xy$平面上の点$(x,\ y)$の軌跡を求めよ。

(2)実数$\alpha$は$0 \lt \alpha \lt \displaystyle \frac{\pi}{2}$を満たす定数とする。$w$が偏角$\alpha$の複素数
全体を動くとき、$xy$平面上の点$(x,\ y)$の軌跡を求めよ。

京都大学過去問
単元: #大学入試過去問(数学)#複素数平面#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $w$を$0$でない複素数、$x,y$を$w+\displaystyle \frac{1}{w}=x+yi$を満たす実数とする。
(1)実数$R$は$R \gt 1$を満たす定数とする。$w$が絶対値$R$の複素数
全体を動くとき、$xy$平面上の点$(x,\ y)$の軌跡を求めよ。

(2)実数$\alpha$は$0 \lt \alpha \lt \displaystyle \frac{\pi}{2}$を満たす定数とする。$w$が偏角$\alpha$の複素数
全体を動くとき、$xy$平面上の点$(x,\ y)$の軌跡を求めよ。

京都大学過去問
投稿日:2018.06.05

<関連動画>

【数ⅢC】 複素数平面の基本⑪図形の方程式を条件から考える

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
点zが原点Oを中心とする半径2の円上を動くとき、$w=\dfrac{z-2}{z+1}$はどのような図形を描くか
この動画を見る 

福田の数学〜青山学院大学2021年理工学部第4問〜複素数平面上の点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$複素数平面上の点zが$z+\bar{ z }=2$を満たしながら動くとき、以下の問いに答えよ。
(1)点z全体が描く図形を複素数平面上に図示せよ。

(2)$w=(2+i)z$ で定まる点w全体が描く図形を調べよう。
$(\textrm{a})w$の実部をu、虚部をvとして$w=u+vi$と表すとき、u,vが満たす方程式
を求めよ。
$(\textrm{b})$点w全体が描く図形を複素数平面上に図示せよ。

(3)$w=z^2$で定まる点w全体が描く図形を複素数平面上に図示せよ。

2021青山学院大学理工学部過去問
この動画を見る 

福田の一夜漬け数学〜数学III 複素数平面〜ド・モアブルの定理(2)

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\alpha=\cos\displaystyle \frac{\pi}{10}+i\sin\displaystyle \frac{\pi}{10}$ のとき次の値を求めよ。

(1)$\alpha^{19}+\alpha^{18}+\alpha^{17}+\cdots+\alpha+1$

(2)$\alpha^{19}\alpha^{18}\alpha^{17}\cdots\alpha^2\alpha$

(3)$(1-\alpha)(1-\alpha^2)(1-\alpha^3)\cdots(1-\alpha^{19})$
この動画を見る 

福田の1.5倍速演習〜合格する重要問題040〜上智大学2019年度TEAP理系第2問〜複素数平面上で正三角形となる条件

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
複素数平面において、円周$|z|=1$上の異なる3点$z_1,z_2,z_3$を考える。
このとき、次の条件pとqは同値であることを示せ。
$p:z_1,z_2,z_3$を頂点とする三角形が正三角形である。
$q:z_1+z_2+z_3=0$

2019上智大過去問
この動画を見る 

数学どうにかしたい人へ

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#図形の性質#式と証明#複素数と方程式#平面上のベクトル#空間ベクトル#平面上の曲線#複素数平面#図形と計量#データの分析#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#データの分析#整数の性質#場合の数#確率#三角形の辺の比(内分・外分・二等分線)#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#図形と方程式#三角関数#指数関数と対数関数#微分法と積分法#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#円と方程式#軌跡と領域#三角関数とグラフ#加法定理とその応用#指数関数#対数関数#平均変化率・極限・導関数#接線と増減表・最大値・最小値#数列#確率分布と統計的な推測#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#数列とその和(等差・等比・階差・Σ)#漸化式#数学的帰納法#確率分布#統計的な推測#関数と極限#微分とその応用#積分とその応用#2次曲線#複素数平面#図形への応用#関数(分数関数・無理関数・逆関数と合成関数)#数列の極限#関数の極限#微分法#色々な関数の導関数#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#不定積分#定積分#面積・体積・長さ・速度#空間における垂直と平行と多面体(オイラーの法則)#不定積分・定積分#面積、体積#媒介変数表示と極座標#速度と近似式#数学(高校生)#数B#数C#数Ⅲ
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
数学が共通テストのみの人の勉強法紹介動画です
この動画を見る 
PAGE TOP