一橋大(1) - 質問解決D.B.(データベース)

一橋大(1)

問題文全文(内容文):
$x\neq 0$は実数である.
$x+\dfrac{1}{x}$が整数なら,$x^n+\dfrac{1}{x^n}$も整数であることを示せ.$n$は自然数である.

1991一橋大過去問
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x\neq 0$は実数である.
$x+\dfrac{1}{x}$が整数なら,$x^n+\dfrac{1}{x^n}$も整数であることを示せ.$n$は自然数である.

1991一橋大過去問
投稿日:2020.10.14

<関連動画>

数学「大学入試良問集」【3−2 整数 余りによる分類①】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#関西大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$a,b,c$を正の整数とする。
(1)$a^2$を3で割った余りは0または1であることを示せ。
(2)$a^2+b^2=c^2$を満たすとき、$a,b,c$の積$abc$が3の倍数であることを示せ。
(3)$a^2+b^2=225$を満たす$a,b$の値を求めよ。
この動画を見る 

綺麗な数字の並びの平方数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
平方数であることを示せ.
$\underbrace{277 + \cdots + 7}_{n個}
\underbrace{88 + \cdots + 89}_{ n+1個}$
この動画を見る 

良問だぜ!自画自賛

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$は自然数であり,$P$は素数である.
$m^6+3^n=7P$
これを解け.
この動画を見る 

合同式の応用

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$6$桁の整数である.
$n=1234A5$であり,$n^2+4n+1$が$11$の倍数となる$A$をすべて求めよ.
この動画を見る 

防衛医大 ピタゴラス数 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#防衛医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
防衛医科大学校過去問題
$a^2+b^2+c^2$ a,b,c自然数
a,b,cのいずれかは5の倍数であることを示せ。

*旭川医科大学
(1)c奇数
(2)a,b1つは3の倍数
(3)a,b1つは4の倍数
この動画を見る 
PAGE TOP