一橋大(1) - 質問解決D.B.(データベース)

一橋大(1)

問題文全文(内容文):
$x\neq 0$は実数である.
$x+\dfrac{1}{x}$が整数なら,$x^n+\dfrac{1}{x^n}$も整数であることを示せ.$n$は自然数である.

1991一橋大過去問
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x\neq 0$は実数である.
$x+\dfrac{1}{x}$が整数なら,$x^n+\dfrac{1}{x^n}$も整数であることを示せ.$n$は自然数である.

1991一橋大過去問
投稿日:2020.10.14

<関連動画>

合同式

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$123^{456}を78で割ったあまりを求めよ.$
この動画を見る 

2022年の整数問題!この問題好きです❤️ 早稲田大学高等学院2022年入試問題解説49問目

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2022=x \sqrt y (x^y+y^y)$
を満たす自然数x,yは?

2022早稲田大学高等学院
この動画を見る 

連続する五つの整数から一つ除く

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
連続する5つの整数がある。そのうち1つを除いた4つの整数の和は2017となる。
除いた数を求めよ。
明治大学付属明治高等学校
この動画を見る 

良問だぜ!自画自賛

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$は自然数であり,$P$は素数である.
$m^6+3^n=7P$
これを解け.
この動画を見る 

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m^2+615=2^n$である,自然数$m,n$を求めよ.
この動画を見る 
PAGE TOP