東工大(’86)整数 Japanese university entrance exam questions - 質問解決D.B.(データベース)

東工大(’86)整数 Japanese university entrance exam questions

問題文全文(内容文):
東京工業大学'86過去問題
整数$a_n = 19^n+(-1)^{n-1}・2^{4n-3}$
$(n=1,2,3\cdots)$
のすべてを割り切る素数を求めよ。
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
東京工業大学'86過去問題
整数$a_n = 19^n+(-1)^{n-1}・2^{4n-3}$
$(n=1,2,3\cdots)$
のすべてを割り切る素数を求めよ。
投稿日:2018.04.10

<関連動画>

千葉大学、弘前大学 整数問題 メルセンヌ素数 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#千葉大学#数学(高校生)#弘前大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
弘前大学過去問題
$n^5-n$は30の倍数であることを示せ。

千葉大学過去問題
$2^n-1$が素数ならnは素数であることを示せ。
この動画を見る 

桐朋 整数問題

アイキャッチ画像
単元: #数A#場合の数と確率#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
a,bをそれぞれ1ケタの自然数とする。$2^a \times 3^b$が72の倍数とならないa,bの組は何通り?

桐朋高等学校
この動画を見る 

福田の数学〜明治大学2021年理工学部第1問(1)〜2次方程式が整数を解にもつ条件

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#2次関数#複素数と方程式#2次方程式と2次不等式#整数の性質#約数・倍数・整数の割り算と余り・合同式#解と判別式・解と係数の関係#数学(高校生)#大学入試解答速報#数学#明治大学
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(1)$a$と$b$を正の整数とし、$f(x)=ax^2-bx+4$とおく。2次方程式$f(x)=0$は
異なる2つの実数解をもつとする。
$(\textrm{a})$2次方程式$f(x)=0$の2つの解がともに整数であるとき
$\left\{
\begin{array}{1}
a=1  \\
b=\boxed{\ \ ア\ \ }
\end{array}
\right.$  
または 
$\left\{
\begin{array}{1}
a=\boxed{\ \ イ\ \ }\\
b=\boxed{\ \ ウ\ \ }
\end{array}
\right.\\$
である。

$(\textrm{b})b=7$とする。2次方程式$f(x)=0$の2つの解のうち一方が整数であるとき、
$a=\boxed{\ \ エ\ \ }$であり、$f(x)=0$の2つの解は
$x=\boxed{\ \ エ\ \ },\ \frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キ\ \ }}$
である。

2021明治大学理工学部過去問
この動画を見る 

19滋賀県教員採用試験(数学:2番 整数問題)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{2}$
$n$を整数とする.
$n^5-n$は30の倍数であることを示せ.
この動画を見る 

整数問題の難問!誘導ありでも難しいです【九州大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
自然数$m,n$が、$n^4=1+210m^2$ ・・・①を満たすとき,以下の問いに答えよ。

(1)$\displaystyle \frac{n^2+1}{2},\displaystyle \frac{n^2-1}{2}$は互いに素な整数であることを示せ。

九州大過去問
この動画を見る 
PAGE TOP