AkiyaMath様の作成問題① 初コラボ #整数問題 #3次方程式の応用 - 質問解決D.B.(データベース)

AkiyaMath様の作成問題① 初コラボ #整数問題 #3次方程式の応用

問題文全文(内容文):
$k$:整数
3次方程式
$4x^3-(k+3)x+2k+1=0$の解になる2以上の有理数の総和を求めよ。
チャプター:

00:00 問題提示とAkiyaMathさんの紹介
02:11 本編スタート
12:10 作成した解答①のみの掲載
12:24 作成した解答②のみの掲載
12:38 作成した解答③のみの掲載
12:52 作成した解答④のみの掲載

単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$k$:整数
3次方程式
$4x^3-(k+3)x+2k+1=0$の解になる2以上の有理数の総和を求めよ。
投稿日:2022.07.09

<関連動画>

群馬大(医)整数問題 完全数の約数の総和 約数の逆数の総和

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$k$自然数
$2^k-1$が素数であるとする。
$a=2^{k-1}(2^k-1)$のすべての約数を$a_{1},a_{2},a_{3},…,a_{n}$

(1)
$\displaystyle \sum_{i=1}^n a_i$

(2)
$\displaystyle \sum_{i=1}^n \displaystyle \frac{1}{a_i}$

出典:1986年群馬大学 大学院医学系研究科 医学部医学科 過去問
この動画を見る 

整数問題 あの定理の証明

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2P^4-1237$が素数となる素数$P$をすべて求めよ.
この動画を見る 

福田の数学〜立教大学2025理学部第4問〜整式がある数の倍数であることの証明

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数学的帰納法#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{4}$

$n$を$2$以上の自然数とする。次の問いに答えよ。

(1)$n^3-n$は$6$のばいすうであることを示せ。

(2)$n^4+2n^3-n^2-2n$は$24$の倍数であることを示せ。

(3)$n$に関する数学的帰納法を用いて、

$n^5+4n$は$5$の倍数であることを示せ。

(4)$n^9+2n^8-n^7-2n^6+4n^5+8n^4-4n^3-8n^2$は

$120$の倍数であることを示せ。

$2025$年立教大学理学部過去問題
この動画を見る 

【数A】modの計算法則を分かりやすく説明します

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
modの計算法則をわかりやすく説明します。(証明付き!)
この動画を見る 

千葉大 2次方程式の解 整数問題

アイキャッチ画像
単元: #数Ⅰ#数A#2次関数#2次関数とグラフ#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$P$素数
$Px^2+(5-P^2)x-3P=0$が整数解をもつ$P$の値を求めよ

出典:2003年千葉大学 過去問
この動画を見る 
PAGE TOP