【数B】数列:種々の数列格子点 - 質問解決D.B.(データベース)

【数B】数列:種々の数列格子点

問題文全文(内容文):
座標平面上の曲線$y=-nx^2+2n^2x$とx軸で囲まれた図形(境界を含む)をDnとし、図形Dnにある格子点の個数をAnとする。
(1)$A_1、A_2$の値を求めよ。
(2)図形Dnの格子点のうち、x座標の値が$x=k(k=0,1,2,・・・,2n)$である格子点の個数をBkとする。Bkをnとkの式で表せ。
(3)Anをnの式で表せ。
チャプター:

0:00 オープニング
1:22 領域の図示(グラフ)
1:44 (1)の解答
5:03 (2)の解答
6:50 (3)の解答
11:20 まとめ

単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
座標平面上の曲線$y=-nx^2+2n^2x$とx軸で囲まれた図形(境界を含む)をDnとし、図形Dnにある格子点の個数をAnとする。
(1)$A_1、A_2$の値を求めよ。
(2)図形Dnの格子点のうち、x座標の値が$x=k(k=0,1,2,・・・,2n)$である格子点の個数をBkとする。Bkをnとkの式で表せ。
(3)Anをnの式で表せ。
投稿日:2021.07.12

<関連動画>

上智大 連立漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#漸化式#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
上智大学過去問題
$a_1 =0,b_1=6$
$a_{n+1}=\frac{a_n+b_n}{2}$,$b_{n+1}=a_n$
点Pの$(a_n,b_n)$はある直線上にある。その式は?
$n \to \infty$のときの$P_n$
この動画を見る 

福田の数学〜ポリアの壺とは逆の試行における確率の極限〜杏林大学2023年医学部第1問後編〜確率漸化式と極限

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
複数の玉が人った袋から玉を 1 個取り出して袋に戻す事象を考える。どの玉も同じ確率で取り出されるものとし、nを自然数として、以下の間いに答えよ。
(1) 袋の中に赤玉 1 個と黒玉 2 個が入っている。この袋の中から玉を 1 個取り出し、取り出した玉と同じ色の玉をひとつ加え、合計 2 個の玉を袋に戻すという試行を繰り返す。n回目の試行において赤玉が取り出される確率を$p_{ n }$とすると、$p_{ 2 }=\dfrac{\fbox{ア}}{\fbox{イ}}, p_{ 3 }=\dfrac{\fbox{ウ}}{\fbox{エ}}$
( 2 )袋の中に赤玉 3 個と黒玉 2 個が人っている。この袋の中から玉を 1 個取り出し、赤玉と黒玉を 1 個ずつ、合計 2 個の球を袋に戻す試行を繰り返す。n回目の試行において赤玉が取り出される確率を$p_{ n }$とすると、次式が成り立つ。
$p_{ 2 }=\dfrac{\fbox{オカ}}{\fbox{キク}}, p_{ 3 }=\dfrac{\fbox{ケコ}}{\fbox{サシ}}$
n回目の試行開始時点で袋に人っている玉の個数$M_{ n } はM_{ n }=n+\fbox{ス}$であり、この時点で袋に入っていると期待される赤玉の個数$R_{ n }はR_{ n }=M_{ n }×P_{ n }$と表される。n回目の試行において、黒玉が取り出された場合にのみ、試行後の赤玉の個数が施行前と比べて$\fbox{セ}$個増えるため、n+ 1 回目の試行開始時点で袋に入っていると期待される赤玉の個数は$R_{ n+1 }=R_{ n }+(1-P_{ n })×\fbox{セ}$となる。したがって、
$P_{ n+1 }=\dfrac{n+\fbox{ソ}}{n+\fbox{タ}}×P_{ n }+\dfrac{1}{n+\fbox{チ}}$
が成り立つ。このことから、$(n+3)×(n+\fbox{ツ})×(P_{n}-\dfrac{\fbox{テ}}{\fbox{ト}})$がnに依らず一定となる事が分かり、$\displaystyle \lim_{ n \to \infty } P_n =\dfrac{\fbox{ナ}}{\fbox{ニ}}$と求められる。

2023杏林大学医過去問
この動画を見る 

信州大(医)変な数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{2n-1}=n,a_{2n}=a_{n}(n=1,2,3…)$

(1)
$a_{24}$を求めよ

(2)
$a_{1}~a_{1000}$の中に6はいくつあるか。

出典:2010年信州大学医学部 過去問
この動画を見る 

東大 2次方程式 解と係数 漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#数列#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2-4x-1=0$の2つの解を$\alpha, \beta(a \gt \beta),S_{n}=\alpha ^n+\beta ^n$

(1)
$S_{1},S_{2},S_{3}$を求めよ。
$S_{n}$を$S_{n-1}$と$S_{n-2}$で表せ

(2)
$\beta^3$以下の最大の整数を求めよ

(3)
$a^{2003}$以下の最大の整数の1の位の数を求めよ

出典:2003年東京大学 過去問
この動画を見る 

【等差数列】中学受験・高校受験・大学受験で使える!SPI対策【勉強法】

アイキャッチ画像
単元: #算数(中学受験)#計算と数の性質#数列#数列とその和(等差・等比・階差・Σ)#規則性(周期算・方陣算・数列・日暦算・N進法)#数学(高校生)
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
等差数列

例1
5, 8, 11, 14, 17, -...と並んでいる。

(1) 20番目の数はいくつ?

(2)65は何番目の数?

(3)20日までの数を全部たすと いいくつになる?
この動画を見る 
PAGE TOP