【理数個別の過去問解説】2007年度京都大学 数学 理系第1問(2)解説 - 質問解決D.B.(データベース)

【理数個別の過去問解説】2007年度京都大学 数学 理系第1問(2)解説

問題文全文(内容文):
得点1,2,...,nが等しい確率で得られるゲームを独立に3回繰り返す。
このとき、 2回目の得点が1回目の得点以上であり、さらに3回目の特典が2回目の得点以上となる確率を求めよう。
チャプター:

0:00 オープニング
0:05 問題文
0:20 重複の考え方:箱と玉と仕切り棒
2:06 名言

単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
得点1,2,...,nが等しい確率で得られるゲームを独立に3回繰り返す。
このとき、 2回目の得点が1回目の得点以上であり、さらに3回目の特典が2回目の得点以上となる確率を求めよう。
投稿日:2021.06.01

<関連動画>

【数A】【場合の数と確率】組み合わせ応用3 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
・右のような街路で、PからQまで行く最短経路のうち、次の場合は何通りあるか。
(1)総数
(2)Rを通る経路
(3)R、Sをともに通る経路
(4)×印の個所を通らない経路

・4桁の自然数nの千の位、百の位、十の位、一の位の数字を、それぞれa,b,c,dとする。次の条件を満たすnは全部で何個あるか。
(1)a>b>c>d
(2)a≧b>c>d
この動画を見る 

福田の数学〜浜松医科大学2022年医学部第4問〜確率漸化式と誤った答案に対する指摘

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
次の問題
問題
表面と裏面が出る確率がそれぞれであるコインを投げる試行を繰り返し、同
じ面が3回連続して出た時点で試行を終了する。n回投げ終えた段階で試行が
終了する確率 $p_n$を求めよ。
に対する次の答案Aについて以下の問いに答えよ。
(1) もし答案Aに誤りがあれば誤りを指摘し、その理由を述べよ。ただし、すでに
指摘してある誤った結論から論理的に導き出した結論を誤りとして指摘する必要
はない。誤りがないときは「誤りなし」と答えよ。
(2) 答案Aで導かれたp_nと正解の$p_n$とで値が異なるとき、値が異なる最小のnを
求め、そのnに対する正解のpnの値を答えよ。そのようなnがないときは
「すべて一致する」と答えよ。

答案A
自然数nに対して、コインをn回投げ終えた段階で、その後最短で試行が終了するために
必要な回数がk回($k \geqq 0$)である確率を$p_n(k)$とする。このとき、
kは0,1,2のいずれかであるから、確率の総和は
$p_n(0)+p_n(1)+p_n(2)=1$
である。また、$p_n(0)=p_n,p_{n+1}(0)=\frac{1}{2}p_n(1),p_{n+2}(0)=\frac{1}{4}p_n(2)$であるから漸化式
$p_n+2p_{n+1}+4p_{n+2}=1 (n \geqq 1)$
を得る。ここで$\frac{1}{7}+\frac{2}{7}+\frac{4}{7}=1$なので、$q_n=2^n(p_n-\frac{1}{7})$とすれば
$q_n+q_{n+1}+q_{n+2}=0$
である。よって$n \geqq 4$に対して
$q_n=-q_{n-1}-q_{n-2}=(q_{n-2}+q_{n-3})-q_{n-2}=q_{n-3}$
が成立する。以上より、
$Q(x)=
\left\{
\begin{array}{1}q_1 (nを3で割った時の余りが1のとき)\\
q_2 (nを3で割った時の余りが2のとき)\\
q_3      (nが3で割り切れるとき)\\
\end{array}
\right.$
とすれば求める確率は
$p_n=\frac{q_n}{2^n}+\frac{1}{7}=\frac{Q(n)}{2^n}+\frac{1}{7} (n \geqq 4)$
である。また最初の2項は定義より$p_1=p_2=0$であり$p_n$の漸化式で$n=1$とすれば
$p_1+2p_2+4p_3=1$ であるから$p_3=\frac{1}{4}$である。さらに
$q_1=-\frac{2}{7}, q_2=-\frac{4}{7}, q_3=\frac{6}{7}$
である。したがって
$p_1=p_2=0, p_3=\frac{1}{4}, p_n=\frac{Q(n)}{2^n}+\frac{1}{7} (n \geqq 4)$
となる。

2022浜松医科大学医学部過去問
この動画を見る 

確率 法政大

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
白$3n$個,赤$2n$個から3個同時に取り出す.
白2個赤1個である確率を$p_n$とするとき,これを解け.
$\displaystyle \lim_{n\to(x)}P_n$

法政大
この動画を見る 

福田のわかった数学〜高校1年生074〜場合の数(13)整数解の個数

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 場合の数(13) 整数解の個数
次の条件を満たす整数の組(x,y,z,u)は何個あるか。
(1)$x+y+z+u=10, x \geqq 0, y \geqq 0, z \geqq 0, u \geqq 0$
(2)$x+y+z+u=10, x \geqq 1, y \geqq 1, z \geqq 1, u \geqq 1$
(3)$x+y+z+u \leqq 10, x \geqq 0, y \geqq 0, z \geqq 0, u \geqq 0$
この動画を見る 

福田の1.5倍速演習〜合格する重要問題087〜一橋大学2018年度文系第3問〜サイコロの目の積がkとなる確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 3個のさいころを投げる。
(1)出た目の積が6となる確率を求めよ。
(2)出た目の積がkとなる確率が$\frac{1}{36}$であるようなkを全て求めよ。

2018一橋大学文系過去問
この動画を見る 
PAGE TOP