指数・対数・対称式 - 質問解決D.B.(データベース)

指数・対数・対称式

問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
43^x=2021 \\
47^y=2021
\end{array}
\right.
\end{eqnarray}$

$\dfrac{5xy+x+y}{4xy-x-y}$の値を求めよ.
単元: #数Ⅱ#指数関数と対数関数#指数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
43^x=2021 \\
47^y=2021
\end{array}
\right.
\end{eqnarray}$

$\dfrac{5xy+x+y}{4xy-x-y}$の値を求めよ.
投稿日:2021.07.21

<関連動画>

これ知ってた?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
指数タワーに関して解説していきます.
この動画を見る 

金沢大 指数関数の最大値

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=8^x-4^{x+\frac{1}{2}}+2^x+\dfrac{23}{27}$
$-2\leqq x\leqq a(a\gt -2)$における$f(x)$の最大値が$1$となる$a$の範囲を求めよ.

2020金沢大過去問
この動画を見る 

どっちがでかい?工夫しよう

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
どちらが大きいか?
$4^9+6^{10}+3^{20}$ VS $5^{12}・2^4$
この動画を見る 

福田の数学・入試問題解説〜東北大学2022年理系第2問〜4次関数の極値と最小値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
aを実数とし、実数xの関数$f(x)=(x^2+3x+a)(x+1)^2$を考える。
(1)f(x)の最小値が負となるようなaのとりうる値の範囲を求めよ。
(2)$a \lt 2$のとき、f(x)は2つの極小値をもつ。このときf(x)が極小となる
xの値を$\alpha_1,\alpha_2(\alpha_1 \lt \alpha_2)$とする。
$f(\alpha_1) \lt f(\alpha_2)$を示せ。
(3)f(x)が$x \lt \beta$において単調減少し、かつ、$x=\beta$において最小値をとるとする。
このとき、aのとりうる値の範囲を求めよ。

2022東北大学理系過去問
この動画を見る 

答えはわかるでしょう。

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
a+b=69
$(a - 34)^{2024} + (b-35)^{2023} = ?$
この動画を見る 
PAGE TOP