【高校数学】 数B-82 いろいろな数列の和③ - 質問解決D.B.(データベース)

【高校数学】 数B-82 いろいろな数列の和③

問題文全文(内容文):
次の数列の初項から第$n$項までの和を求めよう.

①$\dfrac{1}{1+\sqrt2},\dfrac{1}{\sqrt2+\sqrt3},\dfrac{1}{\sqrt3+\sqrt4},・・・$

②$\dfrac{1}{1+\sqrt3},\dfrac{1}{\sqrt3+\sqrt5},\dfrac{1}{\sqrt5+\sqrt7},・・・$
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の数列の初項から第$n$項までの和を求めよう.

①$\dfrac{1}{1+\sqrt2},\dfrac{1}{\sqrt2+\sqrt3},\dfrac{1}{\sqrt3+\sqrt4},・・・$

②$\dfrac{1}{1+\sqrt3},\dfrac{1}{\sqrt3+\sqrt5},\dfrac{1}{\sqrt5+\sqrt7},・・・$
投稿日:2016.02.17

<関連動画>

兵庫医科大 3項間漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#兵庫医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{1}=1$ $a_{2}=4$
$a_{n+2}=4a_{n+1}-3a_{n}-2$
一般項を求めよ

出典:2002年兵庫医科大学 過去問
この動画を見る 

早稲田(商)特殊な数列の和

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
正の整数$k$に対して$a_k$を$\sqrt{k}$にもっとも近い整数とする.
これを解け.
(例)$a_5=2,a_{20}=4$

(1)$\displaystyle \sum_{k=1}^{12}a_k$
(2)$\displaystyle \sum_{k=1}^{1998}a_k$

1998早稲田(商)
この動画を見る 

福田の数学〜慶應義塾大学2023年看護医療学部第1問(5)〜整式の割り算の余り

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (5)整式P(x)を
P(x)=$\displaystyle\sum_{n=1}^{20}nx^n$=20$x^{20}$+19$x^{19}$+18$x^{18}$+...+2$x^2$+$x$
と定める。このとき、P(x)をx-1で割った時の余りは$\boxed{\ \ ク\ \ }$である。
また、P(x)を$x^2$-1で割った時の余りは$\boxed{\ \ ケ\ \ }$である。

2023慶應義塾大学看護医療学部過去問
この動画を見る 

旭川医大 漸化式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#旭川医科大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
旭川医科大学過去問題
数列{$a_n$},{$b_n$}
$b_n=3a_{n+1}-2a_n$と定義
{$b_n$}は初項b$(\neq 0)$,公比rの等比数列
(1)$b=r=2 , a_1=\frac{1}{2}$のとき{$a_n$}の一般項
(2){$a_n$}が等比数列となるための必要十分条件を$b,r,a_1$を用いて表せ。
この動画を見る 

自治医科大 食塩水漸化式

アイキャッチ画像
単元: #数列#漸化式#売買損益と食塩水#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$A$には16%の食塩水400gある.$B$には4%の食塩水200gある.
100gずつ取り出して入れかえる.$n$回後の$A,B$の濃度$a_n,b_n$を$n$の式で表せ.

1992自治医大過去問
この動画を見る 
PAGE TOP