2点を通る直線の方程式を求めるのに連立方程式を使うのは卒業しましょう - 質問解決D.B.(データベース)

2点を通る直線の方程式を求めるのに連立方程式を使うのは卒業しましょう

問題文全文(内容文):
2点を通る直線の方程式を求めるのに連立方程式を使うのは卒業しましょう。
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2点を通る直線の方程式を求めるのに連立方程式を使うのは卒業しましょう。
投稿日:2018.01.18

<関連動画>

【高校数学】 数Ⅱ-58 直線の方程式③

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の直線に関して、点(3、1)と対称な点を求めよう。

①$x$軸

②$y=x$

③$4x-6y+7=0$
この動画を見る 

【数Ⅱ】図形と方程式:点と直線の距離(最小値):平面上の2点をA(1,1),B(2,3)とする。点Pが放物線y=x²+4x+10上を動くとき△PABの面積の最小値を求めよ。

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
平面上の2点をA(1,1),B(2,3)とする。点Pが放物線$y=x^2+4x+10$上を動くとき△PABの面積の最小値を求めよ。
この動画を見る 

福田の数学〜立教大学2021年理学部第1問(2)〜3直線が1点で交わる条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(2)$t$を実数とする。座標平面上の3つの直線
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+(2t-2)y-4t+2=0 \\
x+(2t+2)y-4t-2=0 \\
2tx+y-4t=0     
\end{array}
\right.
 (-2 \leqq t \leqq 1)
\end{eqnarray}$ 
が1つの点で交わるようなtの値を全て求めると$t=\boxed{イ}$である。

2021立教大学理学部過去問
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜直線の方程式(2)線対称と折れ線の最小、高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 直線$\ell:x+2y-9=0,$ 2点$A(2,1),B(6,-1)$がある。次を求めよ。
(1)直線$\ell$に関して、点$A$と対称な点$C$の座標。
(2)直線$\ell$に関して、直線$m:x-y-1=0$と対称な直線$n$の方程式。
(3)直線$\ell$上の点$P$で$AP+BP$を最小にする点$P$の座標。
この動画を見る 

【数Ⅱ】【図形と方程式】内分と外分の基本、点と直線 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2点$\rm A(-5),B(11)$に対して、線分$\rm AB$を$5:3$に内分する点を$\rm P$、$7:11$に外分する点を$\rm Q$とする。線分$\rm PQ$の中点の座標を求めよ。

次の3点が一直線上にあるとき、$t$の値を求めよ。
(1) $(-2,6),(0,3),(4,t)$
(2) $(1,4),(-1,t),(t,2)$
この動画を見る 
PAGE TOP