2023高校入試数学解説44問目 慶應女子 整数問題 - 質問解決D.B.(データベース)

2023高校入試数学解説44問目 慶應女子 整数問題

問題文全文(内容文):
整数xに6を加えると整数mの平方になり、xから17を引くと整数nの平方になる。
m,n,xの値を求めよ。(m,nはともに正)

2023慶應義塾女子高等学校
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
整数xに6を加えると整数mの平方になり、xから17を引くと整数nの平方になる。
m,n,xの値を求めよ。(m,nはともに正)

2023慶應義塾女子高等学校
投稿日:2023.02.13

<関連動画>

整式の剰余 xの2023乗

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^{2023}を\displaystyle \sum_{n=1}^{16} x^n=1+x+x^2+・・・・+x^{16}$で割った余りを求めよ.

この動画を見る 

素数問題の良問だよ

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
p,qは素数である.
$p^3-q^5=(p+q)^2$を満たす(p,q)の組をすべて求めよ.
この動画を見る 

合同式 千葉大

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y,z,n$は自然数である.$x^2=7^{2n}(y^2+10z^2)$である.

(1)平方数を3で割った余りは0か1であることを示せ.
(2)$yz$は3の倍数であることを示せ.
(3)$y,z$が共に素数のとき,$x$を$n$を用いて表せ.

2003千葉大過去問
この動画を見る 

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$を整数とする.
$m^2+1=2^n$
これを解け.
この動画を見る 

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$は自然数である.これを解け.
$m^6+295=2^n$
この動画を見る 
PAGE TOP