06大阪府教員採用試験(数学:4番 式変形) - 質問解決D.B.(データベース)

06大阪府教員採用試験(数学:4番 式変形)

問題文全文(内容文):
$\boxed{4}$ $x^5=1,x\neq 1$とする.これを解け.

(1)$x +\dfrac{1}{x}$
(2)$2x+\dfrac{1}{x+1}+\dfrac{x}{x^2+1}+\dfrac{x^2}{x^3+1}+\dfrac{x^3}{x^4+1}$
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{4}$ $x^5=1,x\neq 1$とする.これを解け.

(1)$x +\dfrac{1}{x}$
(2)$2x+\dfrac{1}{x+1}+\dfrac{x}{x^2+1}+\dfrac{x^2}{x^3+1}+\dfrac{x^3}{x^4+1}$
投稿日:2021.02.04

<関連動画>

福田の数学〜東北大学2023年理系第4問〜1の5乗根

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#複素数平面#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#複素数平面#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 実数a=$\frac{\sqrt5-1}{2}$に対して、整式f(x)=$x^2$-$ax$+1を考える。
(1)整式$x^4$+$x^3$+$x^2$+$x$+1 はf(x)で割り切れることを示せ。
(2)方程式f(x)=0の虚数解であって虚部が正のものを$\alpha$とする。$\alpha$を極形式で表せ。ただし、$r^5$=1を満たす実数rがr=1のみであることは、認めて使用してよい。
(3)設問(2)の虚数$\alpha$に対して、$\alpha^{2023}$+$\alpha^{-2023}$の値を求めよ。

2023東北大学理系過去問
この動画を見る 

【数Ⅱ】多項式の割り算【無理数の代入をかんたんに計算!】

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ (1)\begin{array}{r}7\enclose{longdiv}{95\phantom{0}} \\[-3pt]\end{array}
  これを解け.
(2)f(x)=x^3+2x^2+3x+6とおく.
f(1+\sqrt2)を求めよ.$
この動画を見る 

福田のわかった数学〜高校3年生理系073〜平均値の定理(1)不等式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 平均値の定理(1)
$0 \lt a \lt b$のとき
$1-\frac{a}{b} \lt \log b-\log a \lt \frac{b}{a}-1$
を証明せよ。
この動画を見る 

【わかりやすく】等式の証明(数学Ⅱ/等式の証明)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の等式を証明せよ。
(1)$4ab=(a+b)^2-(a-b)^2$
(2)$(a^2+b^2)(c^2+d^2)=(ac+bd)^2+(ad-bc)^2$
この動画を見る 

ネイピア数の分数式がスッキリきれいな数字に

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$\dfrac{e}{\sqrt e}・\dfrac{\sqrt[3]{e}}{\sqrt[4]{e}}・\dfrac{\sqrt[5]{e}}{\sqrt[6]{e}}・・・・・・=?$
この動画を見る 
PAGE TOP