数学「大学入試良問集」【12−1 微分と極値】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【12−1 微分と極値】を宇宙一わかりやすく

問題文全文(内容文):
$a$を実数とする。
$f(x)=x^3+ax^2+(3a-6)x+5$について以下の問いに答えよ。

(1)
関数$y=f(x)$が極値をもつ$a$の範囲を求めよ。

(2)
関数$y=f(x)$が極値をもつ$a$に対して、関数$y=f(x)$は$x=p$で極大値、$x=q$で極小値をとるとする。
関数$y=f(x)$のグラフ上の2点$P(p,f(p)),Q(q,f(q))$を結ぶ直線の傾き$m$を$a$を用いて表せ。
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$a$を実数とする。
$f(x)=x^3+ax^2+(3a-6)x+5$について以下の問いに答えよ。

(1)
関数$y=f(x)$が極値をもつ$a$の範囲を求めよ。

(2)
関数$y=f(x)$が極値をもつ$a$に対して、関数$y=f(x)$は$x=p$で極大値、$x=q$で極小値をとるとする。
関数$y=f(x)$のグラフ上の2点$P(p,f(p)),Q(q,f(q))$を結ぶ直線の傾き$m$を$a$を用いて表せ。
投稿日:2021.05.19

<関連動画>

高専数学 微積II #15 べき級数

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$1-\dfrac{1}{3}x+\dfrac{1}{9}x^2-\dfrac{1}{27}x^3+・・・・・・$
が収束するように
$x$の範囲を定め,和を求めよ.
この動画を見る 

九州大 数式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \frac{x+y}{2}=\displaystyle \frac{y+z}{3}=\displaystyle \frac{z+x}{7}$
すべての実数$x,y,z$でつねに$x^2+y^2+z^2+a(x+y+z) \gt -1$となるような$a$の範囲は?

出典:1962年九州大学 過去問
この動画を見る 

福田の一夜漬け数学〜数学II 図形と方程式〜軌跡(9) 対称式の問題(その1)、高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 実数$x,y$が$x^2+y^2 \leqq 8$ を満たしながら変化するとき
(1)点$P(x+y,xy)$の存在範囲を図示せよ。
(2)$x+y+xy$の最大値、最小値を求めよ。
この動画を見る 

【数Ⅱ】【微分法と積分法】極限の計算 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)$\displaystyle \lim_{ x \to -2 } (x^2+1)(x-1)$
(2)$\displaystyle \lim_{ x \to 1 } (x^3-1)(x-1)$
(3)$\displaystyle \lim_{ x \to 2 } (x^2-x-2)(x^2+x-6)$
(4)$\displaystyle \lim_{ x \to -3 } \frac{1}{x+3}(\frac{12}{x-3}+2)$
この動画を見る 

福田の数学〜東京大学2025理系第2問〜はさみうちの原理を利用する極限

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

(1)$x\gt0$のとき、

不等式$\log x \leqq x - 1$を示せ。

(2)次の極限を求めよ。

$\displaystyle \lim_{n\to\infty} n \displaystyle \int_{1}^{2} \log \left(\dfrac{1+x^{\frac{1}{n}}}{2}\right)dx$

$2025$年東京大学理系過去問題
この動画を見る 
PAGE TOP