福田の数学〜この関数にピンときたら大正解〜北里大学2023年医学部第2問〜関数の増減と方程式の実数解の個数 - 質問解決D.B.(データベース)

福田の数学〜この関数にピンときたら大正解〜北里大学2023年医学部第2問〜関数の増減と方程式の実数解の個数

問題文全文(内容文):
関数$f(x)=2^x-x^2$について考える。必要ならば、$0.6 \lt \log 2 \lt 0.7,-0.4 \lt \log(\log2) \lt -0.3$を用いてよい。
(1)$f(x)$は区間 $x \geqq 4$で増加することを示せ。
(2)方程式$f'(x)=0$の異なる実数解の個数を求めよ。
(3)方程式$f(x)=0$の異なる実数解の個数を求めよ。
(4)方程式$f(x)=0$の実数解のうち、最小のものを$p$とする。
この時、曲線$y=f(x)$の$x \leq 0$の部分、放物線$y=-x^2+\dfrac{2}{\log2}x$、および2つの直線$x=p,x=0$で囲まれた図形の面積を求めよ。

2023北里大学医過去問
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
関数$f(x)=2^x-x^2$について考える。必要ならば、$0.6 \lt \log 2 \lt 0.7,-0.4 \lt \log(\log2) \lt -0.3$を用いてよい。
(1)$f(x)$は区間 $x \geqq 4$で増加することを示せ。
(2)方程式$f'(x)=0$の異なる実数解の個数を求めよ。
(3)方程式$f(x)=0$の異なる実数解の個数を求めよ。
(4)方程式$f(x)=0$の実数解のうち、最小のものを$p$とする。
この時、曲線$y=f(x)$の$x \leq 0$の部分、放物線$y=-x^2+\dfrac{2}{\log2}x$、および2つの直線$x=p,x=0$で囲まれた図形の面積を求めよ。

2023北里大学医過去問
投稿日:2023.12.20

<関連動画>

福田のわかった数学〜高校3年生理系067〜微分(12)微分の計算

アイキャッチ画像
単元: #微分とその応用#微分法#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 微分(12) 微分計算

$y=\sqrt[3]{\frac{2x+1}{x(x-2)^2}}$
を微分せよ。
この動画を見る 

福田の数学〜筑波大学2022年理系第5問〜関数の増減と最大値

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
曲線$C:y=(x+1)e^{-x} (x \gt -1)$上の点Pにおける法線とx軸との交点をQとする。
点Pのx座標をtとし、点Qと点R(t,0)との距離をd(t)とする。
(1) d(t)をtを用いて表せ。
(2) $x \geqq 0$のとき $e^x \geqq 1+x+\frac{x^2}{2}$であることを示せ。
(3) 点Pが曲線C上を動くとき、d(t)の最大値を求めよ。

2022筑波大学理系過去問
この動画を見る 

福田のわかった数学〜高校3年生理系061〜微分(6)高次導関数

アイキャッチ画像
単元: #微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 微分(6) 高次導関数

$f(x)=\sin x$の第$n$次導関数は
$f^{(n)}(x)=\sin(x+\frac{n\pi}{2})$であることを示せ。
この動画を見る 

【数Ⅲ】【微分とその応用】不等式の応用2 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学Ⅲ#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
 次のことが成り立つことを証明せよ。

(1) $b≧a>0$のとき $logb-loga≧\displaystyle \frac{2(b-a)}{(b+a)}$

(2) $0<α<β≦\displaystyle \frac{π}{2}$のとき $\displaystyle \frac{α}{β}<\displaystyle \frac{sin α}{sin β}$

この動画を見る 

【数Ⅲ-127】微分の方程式への応用

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(微分の方程式への応用)

$a$を定数とするとき、次の$x$についての方程式の異なる実数解の個数を調べよ。

①$e^x=x+a$

②$2x^3-ax^2+1$
この動画を見る 
PAGE TOP