福田の1.5倍速演習〜合格する重要問題085〜慶應義塾大学2020年度理工学部第4問〜定積分で表された関数 - 質問解決D.B.(データベース)

福田の1.5倍速演習〜合格する重要問題085〜慶應義塾大学2020年度理工学部第4問〜定積分で表された関数

問題文全文(内容文):
$\Large\boxed{1}$ 実数全体で定義された連続な関数f(x)に対し、
$g(x)$=$\displaystyle\int_0^{2x}e^{-f(t-x)}dt$
とおく。
(1)f(x)=xのとき、g(x)=$\boxed{\ \ ソ\ \ }$である。
(2)実数全体で定義された連続な関数f(x)に対し、g(x)は奇関数であることを示しなさい。
(3)f(x)=$\sin x$のとき、g(x)の導関数g'(x)を求めると、g'(x)=$\boxed{\ \ タ\ \ }$である。
(4)f(x)が偶関数であり、g(x)=$x^3$+3xとなるとき、f(x)=$\boxed{\ \ チ\ \ }$である。このとき、$\displaystyle\int_0^1f(x)dx$の値は$\boxed{\ \ ツ\ \ }$である。

2020慶應義塾大学理工学部過去問
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 実数全体で定義された連続な関数f(x)に対し、
$g(x)$=$\displaystyle\int_0^{2x}e^{-f(t-x)}dt$
とおく。
(1)f(x)=xのとき、g(x)=$\boxed{\ \ ソ\ \ }$である。
(2)実数全体で定義された連続な関数f(x)に対し、g(x)は奇関数であることを示しなさい。
(3)f(x)=$\sin x$のとき、g(x)の導関数g'(x)を求めると、g'(x)=$\boxed{\ \ タ\ \ }$である。
(4)f(x)が偶関数であり、g(x)=$x^3$+3xとなるとき、f(x)=$\boxed{\ \ チ\ \ }$である。このとき、$\displaystyle\int_0^1f(x)dx$の値は$\boxed{\ \ ツ\ \ }$である。

2020慶應義塾大学理工学部過去問
投稿日:2023.02.08

<関連動画>

福田の数学〜早稲田大学2021年理工学部第1問〜2直線のなす角の最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#微分とその応用#微分法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $xy$平面上の曲線$y=x^3$を$C$とする。$C$上の2点$A(-1,-1), B(1,1)$をとる。
さらに、$C$上で原点$O$と$B$の間に動点$P(t,t^3)(0 \lt t \lt 1)$をとる。このとき、
以下の問いに答えよ。
(1)直線$AP$と$x$軸のなす角を$\alpha$とし、直線$PB$と$x$軸のなす角を$\beta$とするとき、
$\tan\alpha,\tan\beta$を$t$を用いて表せ。ただし、$0 \lt \alpha \lt \displaystyle \frac{\pi}{2},\ 0 \lt \beta \lt \displaystyle \frac{\pi}{2}$とする。

(2)$\tan\angle APB$を$t$を用いて表せ。

(3)$\angle APB$を最小にする$t$の値を求めよ。

2021早稲田大学理工学部過去問
この動画を見る 

東工大 秀才栗崎 微分積分 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#微分法#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=\displaystyle \frac{1}{x}(x \gt 0)$と$y=- \displaystyle \frac{1}{x}(x \lt 0)$の接線および$x$軸を囲まれる三角形の面積の最大

出典:1975年東京工業大学 過去問
この動画を見る 

福島大 3次関数の接線 微分

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#接線と法線・平均値の定理#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(-1,1)$から$y=x^3-2px+3$に接線が2本引けるとき$p$の値を求めよ

出典:1991年福島大学 過去問
この動画を見る 

【数Ⅲ】微分法の応用:接線と法線 媒介変数θで表された曲線について、( )内のθの値に対応する点における接線の方程式を求めよう。x=sinθ, y=sin2θ (θ=2π/3)

アイキャッチ画像
単元: #微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
媒介変数$\theta$で表された曲線について、( )内の$\theta$の値に対応する点における接線の方程式を求めよう。
$x=\sin\theta, y=\sin2\theta (\theta=\dfrac{2\pi}{3})$
この動画を見る 

福田の1.5倍速演習〜合格する重要問題013〜京都大学2015年度理系数学第3問〜極限と追い出しの原理

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#数列の極限#微分法#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
aを実数とするとき、(a,0)を通り、$y=e^x+1$に接する直線がただ
一つ存在することを示せ。

(2)$a_1=1$として、$n=1,2,\cdots$について、$(a_n, 0)$を通り、$y=e^x+1$に接する
直線の接点のx座標を$a_{n+1}$とする。このとき、$\lim_{n \to \infty}(a_{n+1}-a_n)$を求めよ。

2015京都大学理系過去問
この動画を見る 
PAGE TOP