合同式 整数問題 - 質問解決D.B.(データベース)

合同式 整数問題

問題文全文(内容文):
$n$自然数
$a_n=2^n+3^n+1$

(1)
$n$が6の倍数のとき、$a_n$は7の倍数でないことを示せ

(2)
$a_n$が7の倍数になる条件は?
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$自然数
$a_n=2^n+3^n+1$

(1)
$n$が6の倍数のとき、$a_n$は7の倍数でないことを示せ

(2)
$a_n$が7の倍数になる条件は?
投稿日:2019.08.21

<関連動画>

17大阪府教員採用試験(数学:3番 整数問題)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{3}$
$x,y,z,a \Leftarrow IR$
$x+y+z=a$
$\dfrac{1}{x}+\dfrac{1}{y}+dfrac{1}{z}=\dfrac{1}{a}$をみたすとき,

(1)$x,y,z$のどれか1つは$a$と等しい.
(2)$n$が奇数のとき,$\dfrac{1}{x^n}+\dfrac{1}{y^n}+\dfrac{1}{z^n}=\dfrac{1}{x^n+y^n+z^n}$
この動画を見る 

素数が無限にあるユニークな証明

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
素数が無限にあるユニークな数の証明に関して解説していきます
この動画を見る 

2021灘高 不思議な誘導付き整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ab^2+(3a+4)b+2a+6=0・・・①$を満たす.

(1)$P=2ab+3a+4$とする.$P^2$を$a$のみを用いて表せ.
(2)①を満たす整数$a,b$を求めよ.$a \neq 0,b \neq 0$

2021灘高過去問
この動画を見る 

【短時間でマスター!!】約数の個数、最小公倍数・最大公約数の求め方を解説!〔現役塾講師解説、数学〕

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
数学1A
約数の個数
最小公倍数・最大公約数
720の正の約数の個数を求めよ。
70,525の最大公約数と最小公倍数は?
この動画を見る 

素数を扱う整数問題の良問!分からなければ実験あるのみ!【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
f(x)=x³+2x²+2
|f(n)|と|f(n+1)|が素数となる整数nをすべて求めよ。
この動画を見る 
PAGE TOP