【数Ⅱ】【複素数と方程式】2次方程式の解と判別式1 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅱ】【複素数と方程式】2次方程式の解と判別式1 ※問題文は概要欄

問題文全文(内容文):
次の2次方程式を解け。
(1)$3(x+1)^2-2(x+1)-1=0$
(2)$2(x-1)^2-4(x-1)+3=0$
(3)$x^2-\sqrt{2} x+\sqrt{2} -1=0$
(4)$x^2-2x+9+2\sqrt{15}=0$

kは定数とする。次の方程式の解の種類を判別せよ。
(1)$kx^2-3x+1=0$
(2)$(k^2-1) x^2+2(k-1)+2=0$
チャプター:

0:00 オープニング
0:04 1問目の解説
8:24 2問目の解説
15:25 3問目の解説

単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#複素数と方程式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の2次方程式を解け。
(1)$3(x+1)^2-2(x+1)-1=0$
(2)$2(x-1)^2-4(x-1)+3=0$
(3)$x^2-\sqrt{2} x+\sqrt{2} -1=0$
(4)$x^2-2x+9+2\sqrt{15}=0$

kは定数とする。次の方程式の解の種類を判別せよ。
(1)$kx^2-3x+1=0$
(2)$(k^2-1) x^2+2(k-1)+2=0$
投稿日:2025.01.26

<関連動画>

ざ・見掛け倒し 複素数の基本

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2-x+1=0$のとき,$x^{2020^{2021}}+\dfrac{1}{x^{2021^{2021}}}$の値を求めよ.
この動画を見る 

東大 複素数

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a=\cos\dfrac{\pi}{3}+i\sin\dfrac{\pi}{3}$
$\dfrac{(1-a^n)(1-a^{2n})(1-a^{3n})(1-a^{4n})(1-a^{5n})}{(1-a)(1-a^2)(1-a^3)(1-a^4)(1-a^5)}$の値を求めよ.($n$は自然数である)

1970東大過去問
この動画を見る 

九州大 虚数解を持つ3次方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3+x^2-x+a=0$は絶対値が1である虚数解をもつ.
実数$a$の値と3つの解を求めよ.

1964九州大(文系)過去問
この動画を見る 

4次方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$(x^2+2x-6)^2+2(x^2+2x-6)-6=x$
この動画を見る 

群馬大 複素数 数列の和

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$Z=\displaystyle \frac{-1+\sqrt{ 3 }i}{2}$

$Z+2Z^2+3Z^3+4Z^4+…+19Z^{19}+20Z^{20}$

出典:群馬大学 過去問
この動画を見る 
PAGE TOP