高校数学:数学検定準1級2次:問題7 関数の増減と変曲点 - 質問解決D.B.(データベース)

高校数学:数学検定準1級2次:問題7 関数の増減と変曲点

問題文全文(内容文):
$f(x)=\displaystyle \frac{2x-1}{x^2-x+1}$

について、次の問いに答えなさい。
(1) $f(x)$の増減を調べ、その極値を求めなさい。また、極値をとるときのxの値も求めなさい。
(2) $xy$平面における曲線$y=f(x)$は3個の変曲点をもちます(このことを証明する必要はありません)。これらの変曲点の座標をすべて求めなさい。
チャプター:

0:00 問題7(1)の解説
6:20 問題7(2)の解説

単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#微分法#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$f(x)=\displaystyle \frac{2x-1}{x^2-x+1}$

について、次の問いに答えなさい。
(1) $f(x)$の増減を調べ、その極値を求めなさい。また、極値をとるときのxの値も求めなさい。
(2) $xy$平面における曲線$y=f(x)$は3個の変曲点をもちます(このことを証明する必要はありません)。これらの変曲点の座標をすべて求めなさい。
投稿日:2024.04.19

<関連動画>

福田の数学〜中央大学2021年理工学部第4問〜定積分と不等式、極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#関数の極限#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{4}$自然数$n$に対し,$f_n(x)=x^{-1+\frac{1}{n}}(x\gt 0)$とおく.
また,正の実数$a_n$は$\displaystyle \int_{1}^{a_n}f_n(x)dx=1$満たすものとする.次の問い 
答えよ.

(1)関数$f_n(x)$の不定積分を求めよ.

(2)$a_n$の値と極限$\displaystyle \lim_{n\to\infty}a_n$を求めよ.また,正の実数$b_n$が$\displaystyle \int_{1}^{b_n}f_{n+1}(x)dx=-1$を満たすとき,$b_n$の値と極限$\displaystyle \lim_{n\to\infty}b_n$を求めよ.

(3)2以上の自然数$k$に対して$\displaystyle \int_{k-1}^{k}f_n(x)dx \gt \dfrac{1}{k}$を示し,これを利用して$a_n\lt 4$を証明せよ.

(4)$\displaystyle \int_{1}^{a_n}f_{n+1}(x)dx\lt 1$を示し,これを利用して$a_n\lt a_{n+1}$を証明せよ.

2021中央大理工学部過去問
この動画を見る 

2023年京大の数学!最大値・最小値【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
次の関数$f(x)$の最大値と最小値を求めよ。

$f(x)=e^{-x^{2}}+\dfrac{1}{4}x^{2}+1+\dfrac{1}{e^{-x^{2}}+\dfrac{1}{4}x^{2}+1}$ $(-1≦x≦1)$

ただし、$e$は自然対数の底であり、その値は$e=2.71・・・$である。

2023京都大過去問
この動画を見る 

大学入試問題#451「このタイプ、たまに出題される」 お茶の水女子大学1997 #不等式の応用

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#お茶の水女子大学
指導講師: ますただ
問題文全文(内容文):
任意の正の数$x,y$に対して
$(x+y)^4 \leqq c^3(x^4+y^4)$が成り立つような$c$の値の範囲を求めよ。

出典:1997年お茶の水女子大学 入試問題
この動画を見る 

高専数学 微積II #2(3)(4) 2次近似式

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$x=0$における2次近似式を求め等式で表せ.
(1)$\cos 2x$
(2)$\log (1+2x)$
この動画を見る 

関数はパターンだ!!北陸高校(福井県)

アイキャッチ画像
単元: #微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 数学を数楽に
問題文全文(内容文):
△OAB=△PAB
S=?(S>2)
*図は動画内参照
北陸(改)
この動画を見る 
PAGE TOP