高校数学:数学検定準1級2次:問題7 関数の増減と変曲点 - 質問解決D.B.(データベース)

高校数学:数学検定準1級2次:問題7 関数の増減と変曲点

問題文全文(内容文):
$f(x)=\displaystyle \frac{2x-1}{x^2-x+1}$

について、次の問いに答えなさい。
(1) $f(x)$の増減を調べ、その極値を求めなさい。また、極値をとるときのxの値も求めなさい。
(2) $xy$平面における曲線$y=f(x)$は3個の変曲点をもちます(このことを証明する必要はありません)。これらの変曲点の座標をすべて求めなさい。
チャプター:

0:00 問題7(1)の解説
6:20 問題7(2)の解説

単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#微分法#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$f(x)=\displaystyle \frac{2x-1}{x^2-x+1}$

について、次の問いに答えなさい。
(1) $f(x)$の増減を調べ、その極値を求めなさい。また、極値をとるときのxの値も求めなさい。
(2) $xy$平面における曲線$y=f(x)$は3個の変曲点をもちます(このことを証明する必要はありません)。これらの変曲点の座標をすべて求めなさい。
投稿日:2024.04.19

<関連動画>

数学「大学入試良問集」【18−5 極大値をもつ条件】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#福島県立医科大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
関数$f(x)=\displaystyle \frac{a-\cos\ x}{a+\sin\ x}$が、$0 \lt x \lt \displaystyle \frac{\pi}{2}$の範囲で極大値をもつように、定数$a$の値の範囲を求めよ。
また、その極大値が2となるときの$a$の値を求めよ。
この動画を見る 

福田のわかった数学〜高校3年生理系056〜微分(1)逆関数の微分

アイキャッチ画像
単元: #微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 微分(1) 逆関数の微分
$y=\sin x  (-\frac{\pi}{2} \lt x \lt \frac{\pi}{2})$
の逆関数の導関数を求めよ。
この動画を見る 

岩手大 微分 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
岩手大学過去問題
$f(x)=-x^4+a(x-2)^2 \quad (a>0)$
(1)f(x)が極小値をもつためのaの範囲
(2)f(x)が極小値を持つとき、その極小値を与えるxの値をtとする。2<t<3を示せ。
(3)(2)のとき、f(t)>-27を示せ。
この動画を見る 

高専数学 微積II #19(1) 3次近似式

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)=\dfrac{1}{(1-x)^2}$の
$x=0$における3次近似式を求めよ.
この動画を見る 

福田の数学〜上智大学2021年理工学部第2問(1)〜条件を満たす関数と命題の否定

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$(1)実数全体で定義され、実数の値をとる関数$f(x)$に対する次の条件$p$を考える。
$p:「K以上の全ての実数xに対してf(x) \geqq 1」$が成り立つような実数Kが存在する。
$(\textrm{i})$次に挙げた関数$(\textrm{a})~(\textrm{d})$のそれぞれについて、pを満たすならばo、pを
満たさないならばxをマークせよ。
$(\textrm{a})f(x)=xe^{-x}  (\textrm{b})f(x)=\frac{2x^2+1}{x^2+1} (\textrm{c})f(x)=x+\sin x (\textrm{d})f(x)=x\sin x$
$(\textrm{ii})$次の条件がpの否定になるように、$\boxed{\ \ あ\ \ }~\boxed{\ \ え\ \ }$のそれぞれの選択肢から、
あてはまるものを選べ。
・$「\boxed{\ \ あ\ \ }\ \boxed{\ \ い\ \ }$実数に対して$\boxed{\ \ う\ \ }」が\boxed{\ \ え\ \ }$

$\boxed{\ \ あ\ \ }$の選択肢$:(\textrm{a})K$以上の  $(\textrm{b})K$未満の
$\boxed{\ \ い\ \ }$の選択肢:$(\textrm{a})$すべての  $(\textrm{b})$ある
$\boxed{\ \ う\ \ }$の選択肢$:(\textrm{a})f(x) \geqq 1  (\textrm{b})f(x) \lt 1$
$\boxed{\ \ え\ \ }$の選択肢$:(\textrm{a})$どんな実数Kについても成り立つ  $\\(\textrm{b})$成り立つような実数Kが存在する 
$(\textrm{iii})$関数$f(x)$に対して、$g(x)=2f(x)$で関数$g(x)$を定める。次に挙げた命題$(\textrm{A})~(\textrm{D})$
のそれぞれについて、正しければoを、正しくなければxを、マークせよ。
$(\textrm{A})f(x)$が$p$を満たすならば、$g(x)$も$p$を満たす。
$(\textrm{B})g(x)$が$p$を満たすならば、$f(x)$もpを満たす。
$(\textrm{C})f(x)$が$p$を満たさないならば、$g(x)$もpを満たさない。
$(\textrm{D})f(x)$がpを満たさないならば、$g(x)$も$p$を満たす。

2021上智大学理工学部過去問
この動画を見る 
PAGE TOP