【数Ⅱ】微分の定義と接線の方程式【接線の傾きがなんで微分で計算できるのか】 - 質問解決D.B.(データベース)

【数Ⅱ】微分の定義と接線の方程式【接線の傾きがなんで微分で計算できるのか】

問題文全文(内容文):
$(1) y=x^2+2x+3のxが1から3まで変化するときの平均変化率を求めよ.$
$(2)y=x^2+2x+3のx=1における微分係数を求めよ.$
$(3)y=x^2+2x+3上の点(1,6)における接線を求めよ.$
$(4)y=x^2+2x+3のx=aにおける微分係数を求めよ.$
$(5)Y=X^2+2X+3に点(1,2)から引いた接線を求めよ.$
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$(1) y=x^2+2x+3のxが1から3まで変化するときの平均変化率を求めよ.$
$(2)y=x^2+2x+3のx=1における微分係数を求めよ.$
$(3)y=x^2+2x+3上の点(1,6)における接線を求めよ.$
$(4)y=x^2+2x+3のx=aにおける微分係数を求めよ.$
$(5)Y=X^2+2X+3に点(1,2)から引いた接線を求めよ.$
投稿日:2022.08.12

<関連動画>

ざ・見掛け倒しだよ

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+・・・・・・・+\dfrac{32}{33}=\dfrac{a}{33!}$
$a$を17で割った余りを求めよ.
この動画を見る 

福田のおもしろ数学115〜円外の点から引いた2本の接線の接点を結んでできる直線の方程式

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
円$x^2$+$y^2$=$r^2$ 上に円外の点($a$,$b$)から2本の接線を引く。このとき2接点P,Qを結ぶ直線の方程式は$ax$+$by$=$r^2$ であることを証明せよ。
この動画を見る 

福田のわかった数学〜高校2年生058〜通過範囲(3)直線の通過範囲

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$通過範囲(3)
直線$(\cos\theta)x+(\sin\theta)y=1$ が通過する領域を図示せよ。
この動画を見る 

福田の数学〜慶應義塾大学2021年環境情報学部第6問〜領域における最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{6}} ある国の有識者会議が、経済活性化に資する公共サービスの供給量xと、医療・\\
公衆衛生に関する公共サービスの供給量yの組み合わせの検討を行っている。供給量\\
(x,y)は、予算やマンパワー、既存の法律など、さまざまな要因により、その実現可能性\\
に制約を受け、次の不等式を満たすものとする。\\
\left\{\begin{array}{1}
2x+5y \leqq 405 \ldots(1)\\
x^2+75y \leqq 6075 \ldots(2)\\
x \geqq 0 \ldots(3)\\
y \geqq 0 \ldots(4)\\
\end{array}\right.\\
\\
供給量(x,y)をx軸とy軸の2次元座標で表すと、実現可能な供給量の組合せ\\
(x,y)の値域は、0 \leqq x \leqq \boxed{\ \ アイ\ \ }の範囲で(1)と(4)を満たす(x,y)の部分の領域と、\\
\boxed{\ \ アイ\ \ } \leqq x \leqq \sqrt{\boxed{\ \ オカ\ \ }}の範囲で(2)と(4)を満たす(x,y)の部分の領域の2つ\\
からなることがわかる。\\
いま、有識者会議の目標がxyの最大化であるとすると、供給量の組合せを\\
(x,y)=(\boxed{\ \ キク\ \ },\boxed{\ \ ケコ\ \ })とする結論を得る。\\
次に、情勢の変化に伴って、上記の(1),(2),(3),(4)に新たな不等式\\
x+y \leqq 93  \ldots(5)\\
が加わったとすると、実現可能な(x,y)の領域は、0 \leqq x \leqq \boxed{\ \ サシ\ \ }の範囲で\\
(1)と(4)を満たす(x,y)の部分の領域と、\boxed{\ \ サシ\ \ } \leqq x \leqq \boxed{\ \ スセ\ \ }の範囲で\\
(5)と(4)を満たす(x,y)の部分の領域と、\boxed{\ \ スセ\ \ } \leqq x \leqq \boxed{\ \ ウエ\ \ }\sqrt{\boxed{\ \ オカ\ \ }}の範囲で\\
(2)と(4)を満たす(x,y)の部分の領域の3つに分けることができる。\\
また、政府の方針にそって、有識者会議の目標がx^2yの最大化に変更されたとすると、\\
供給量の組合せを\\
(x,y)=(\boxed{\ \ ソタ\ \ },\boxed{\ \ チツ\ \ })\\
とする結論を導くことになる。
\end{eqnarray}

2021慶應義塾大学環境情報学部過去問
この動画を見る 

4次方程式

アイキャッチ画像
単元: #数Ⅱ#式と証明#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ (x^2-x-1)^2-x^3=5$
これを解け.
この動画を見る 
PAGE TOP