【数Ⅱ】微分の定義と接線の方程式【接線の傾きがなんで微分で計算できるのか】 - 質問解決D.B.(データベース)

【数Ⅱ】微分の定義と接線の方程式【接線の傾きがなんで微分で計算できるのか】

問題文全文(内容文):
$(1) y=x^2+2x+3のxが1から3まで変化するときの平均変化率を求めよ.$
$(2)y=x^2+2x+3のx=1における微分係数を求めよ.$
$(3)y=x^2+2x+3上の点(1,6)における接線を求めよ.$
$(4)y=x^2+2x+3のx=aにおける微分係数を求めよ.$
$(5)Y=X^2+2X+3に点(1,2)から引いた接線を求めよ.$
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$(1) y=x^2+2x+3のxが1から3まで変化するときの平均変化率を求めよ.$
$(2)y=x^2+2x+3のx=1における微分係数を求めよ.$
$(3)y=x^2+2x+3上の点(1,6)における接線を求めよ.$
$(4)y=x^2+2x+3のx=aにおける微分係数を求めよ.$
$(5)Y=X^2+2X+3に点(1,2)から引いた接線を求めよ.$
投稿日:2022.08.12

<関連動画>

島根大 整数問題 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)#島根大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
島根大学過去問題
$2^m!$が$2^n$で割り切れるnの最大値をN(m)とする。(m,n自然数)
(1)N(m)をmの式で表せ。
(2)N(m)が素数ならばmも素数であることを証明せよ。
この動画を見る 

大学入試問題#485「計算ミスに注意」 九州歯科大学(2016) #定積分 視聴者の僚太さんの紹介で投稿しました。

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#面積、体積#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-2}^{3} (3\sqrt{ x^4-6x^2+9 }-4x) dx$

出典:2016年九州歯科大学 入試問題
この動画を見る 

線形代数:#2線形写像の判定

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
次の写像$\varsigma_i(i=1,2,3,4)$は線形代数であるか調べよ.

(1)
$\varsigma_1:IR^2\to IR$を
$\varsigma_1 \begin{pmatrix}
x \\
y
\end{pmatrix}=2x+3y$と定める.

(2)
$\varsigma_2:IR^2\to IR^2$を
$\varsigma_2 \begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
x+1 \\
y-1
\end{pmatrix}$と定める.

(3)
$\varsigma_3:IR^2\to IR^2$を
$\varsigma_3 \begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
\vert x\vert \\
y
\end{pmatrix}$と定める.

(3)
$\varsigma_4:IR^2\to IR^2$を
$\varsigma_4 \begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
y \\
x
\end{pmatrix}$と定める.

この動画を見る 

ざ・息抜き

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#2次方程式と2次不等式#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \sqrt{2022}x^{\log_{2022}x}=x^2$の解の積の下3桁を求めよ.
この動画を見る 

高専数学 微積II #48(4)(5) 全微分

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
次の関数$z=f(x,y)$の全微分$dz$を求めよ.

(4)$z=\tan(x^2+y^2)$
(5)$z=(2x+y)e^{x+3y}$
この動画を見る 
PAGE TOP