【数Ⅰ】【数と式】因数分解4 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅰ】【数と式】因数分解4 ※問題文は概要欄

問題文全文(内容文):
次の式を因数分解せよ
(1)$a^2 (b-c)+b^2(c-a)+c^2(a-b)$
(2)$(a+b)(b+c)(c+a)+abc$

次の式を因数分解せよ。
(1)$x^3-5x^2-4x+20$ (2)$8x^3+6x^2+3x+1$
(3)$x^2y+4y^2z-4y^3-x^2z$ (4)$a^4+a^2c-ab^3+abc+b^2c$
チャプター:

0:00 開始
0:06 整理の方針について補足
2:29 整理と因数分解
8:49 様々な因数分解

単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式を因数分解せよ
(1)$a^2 (b-c)+b^2(c-a)+c^2(a-b)$
(2)$(a+b)(b+c)(c+a)+abc$

次の式を因数分解せよ。
(1)$x^3-5x^2-4x+20$ (2)$8x^3+6x^2+3x+1$
(3)$x^2y+4y^2z-4y^3-x^2z$ (4)$a^4+a^2c-ab^3+abc+b^2c$
投稿日:2024.11.05

<関連動画>

福田の数学〜虚数係数の2次方程式の解き方〜明治大学2023年全学部統一ⅠⅡAB第1問(2)〜

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$
(2)$k$を実数とする。$x$についての方程式
$x^2$-(4-3$i$)$x$+(4-$ki$)=0
を満たす実数$x$があるとき、$k$=$\boxed{\ \ キ\ \ }$である。このとき、上の等式を満たす$x$の値は2つあり、$\boxed{\ \ ク\ \ }$と$\boxed{\ \ ケ\ \ }$-$\boxed{\ \ コ\ \ }$$i$ である。ただし、$i$を虚数単位とする。
この動画を見る 

福田のおもしろ数学381〜三角形に内接する長方形と円の面積和の最大値

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\triangle$$ABC$は二等辺が$a$の直角二等辺三角形である。また、図のように
三角形の内部に長方形と円を配置する。
図の長方形と円の面積和の最大値は?
この動画を見る 

福田の数学〜立教大学2023年経済学部第1問(7)〜集合と座標平面

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (7)座標平面の3つの部分集合
A=$\left\{(x, -2x+2)|xは実数, x<0\right\}$
B=$\left\{(x, 2x+2)|xは実数, x≧0\right\}$
C=$\left\{(x, -x+3)|xは実数\right\}$
に対し、(A$\cup$B)$\cap$C に属する点の座標をすべて求めると$\boxed{\ \ キ\ \ }$である。
この動画を見る 

福田のおもしろ数学037〜相加相乗平均の罠〜2変数関数の最小値

アイキャッチ画像
単元: #数Ⅰ#2次関数#式と証明#恒等式・等式・不等式の証明#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$x>1,y>1$のとき、
$x+y+\frac{2}{x+y}+\frac{1}{2xy}$の最小値を求めよ
この動画を見る 

ちょっと工夫した 因数分解 9991を素因数分解(慶應女子高)

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
9991を素因数分解せよ.

慶應女子高過去問
この動画を見る 
PAGE TOP