福田の数学〜筑波大学2022年理系第5問〜関数の増減と最大値 - 質問解決D.B.(データベース)

福田の数学〜筑波大学2022年理系第5問〜関数の増減と最大値

問題文全文(内容文):
曲線$C:y=(x+1)e^{-x} (x \gt -1)$上の点Pにおける法線とx軸との交点をQとする。
点Pのx座標をtとし、点Qと点R(t,0)との距離をd(t)とする。
(1) d(t)をtを用いて表せ。
(2) $x \geqq 0$のとき $e^x \geqq 1+x+\frac{x^2}{2}$であることを示せ。
(3) 点Pが曲線C上を動くとき、d(t)の最大値を求めよ。

2022筑波大学理系過去問
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
曲線$C:y=(x+1)e^{-x} (x \gt -1)$上の点Pにおける法線とx軸との交点をQとする。
点Pのx座標をtとし、点Qと点R(t,0)との距離をd(t)とする。
(1) d(t)をtを用いて表せ。
(2) $x \geqq 0$のとき $e^x \geqq 1+x+\frac{x^2}{2}$であることを示せ。
(3) 点Pが曲線C上を動くとき、d(t)の最大値を求めよ。

2022筑波大学理系過去問
投稿日:2022.05.29

<関連動画>

福田の数学〜神戸大学2022年理系第3問〜関数の増減と面積

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
aを実数、$0 \lt a \lt 1$とし、$f(x)=\log(1+x^2)-ax^2$とする。以下の問いに答えよ.
(1)関数f(x)の極値を求めよ。
(2)$f(1)=0$とする。曲線$y=f(x)$とx軸で囲まれた図形の面積を求めよ。

2022神戸大学理系過去問
この動画を見る 

光文社新書「中学の知識でオイラーの公式がわかる」Vol.6 自由落下運動と微分

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
自由落下運動と微分の解説動画です
この動画を見る 

福田のわかった数学〜高校3年生理系062〜微分(7)多重因子(1)

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 微分(7) 多重因子(1)
整式$f(x)$が$(x-\alpha)^3$で割り切れる$\iff f(a)=f'(a)=f''(a)=0$
であることを示せ。
この動画を見る 

タクミと貫太郎 微分を語ろう!「は(速さ)じ(時間)き(距離)「はじき」を使うとゲロが出る」

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
微分についての解説動画
は(速さ)じ(時間)き(距離)「はじき」
この動画を見る 

福田の数学〜東北大学2023年理系第6問〜線分の通過範囲の面積

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#微分法#接線と法線・平均値の定理#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ 関数$f(x)$=$-\frac{1}{2}x$$-\frac{4}{6x+1}$について、以下の問いに答えよ。
(1)曲線y=f(x)の接線で、傾きが1であり、かつ接点のx座標が正であるものの方程式を求めよ。
(2)座標平面上の2点P(x, f(x)), Q(x+1, f(x)+1)を考える。xが0≦x≦2の範囲を動くとき、線分PQが通過してできる図形Sの概形を描け。またSの面積を求めよ。

2023東北大学理系過去問
この動画を見る 
PAGE TOP