整数問題。1,1,2,2,3,3,4,4,を適当に並べてできる数は平方数でないことを証明せよ。 - 質問解決D.B.(データベース)

整数問題。1,1,2,2,3,3,4,4,を適当に並べてできる数は平方数でないことを証明せよ。

問題文全文(内容文):
1,1,2,2,3,3,4,4
この8個の数を並べてできる8桁の数は平方数でないことを証明せよ。
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
1,1,2,2,3,3,4,4
この8個の数を並べてできる8桁の数は平方数でないことを証明せよ。
投稿日:2018.04.04

<関連動画>

息抜き 約数の個数 合同式

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2020^{2020}$の約数の個数を$N$
$N$を2019で割った余りを求めよ
この動画を見る 

20年5月数学検定1級1次試験(合同式)

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}$
$2018n \equiv 2(mod 1000)$をみたす最小の自然数$n$を求めよ.

20年5月数学検定1級1次試験(合同式)過去問
この動画を見る 

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ n^2+3,n^2+7,n^2+13,n^2+19$のすべてが素数となる整数nをすべて求めよ.
この動画を見る 

パスラボ宇佐見さん登場 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$7^n=k^2-99$
整数$k,n$を全て求めよ.
この動画を見る 

19愛知県教員採用試験(数学:4番 整数問題(数列系))

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
4⃣$N=\mathbb{ p }^n×5^n$
(1)正の約数の個数が8個
(2)正の約数の総和が90のとき、$\mathbb{ p }$とNを求めよ。
この動画を見る 
PAGE TOP