大学入試問題#895「2番だけで良い大問」 #福井大学医学部(2015) #数列 - 質問解決D.B.(データベース)

大学入試問題#895「2番だけで良い大問」 #福井大学医学部(2015) #数列

問題文全文(内容文):
$a_1=2$
$3a_{n+1}-4a_n+1=0$

1.数列{$a_n$}の一般項を求めよ。

2.$\displaystyle \frac{a_{n+1}}{a_n}$の小数部分を$b_n$とし、数列{$b_n$}の一般項を求めよ。

3.$\displaystyle \sum_{k=1}^n \displaystyle \frac{1}{b_k}$を求めよ。

出典:2015年福井大学医学部
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#福井大学#数B
指導講師: ますただ
問題文全文(内容文):
$a_1=2$
$3a_{n+1}-4a_n+1=0$

1.数列{$a_n$}の一般項を求めよ。

2.$\displaystyle \frac{a_{n+1}}{a_n}$の小数部分を$b_n$とし、数列{$b_n$}の一般項を求めよ。

3.$\displaystyle \sum_{k=1}^n \displaystyle \frac{1}{b_k}$を求めよ。

出典:2015年福井大学医学部
投稿日:2024.08.05

<関連動画>

福田の数学〜回転の概念を使って考えるよ〜北里大学2023年医学部第3問〜ベクトルの漸化式と点列

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#数列#ベクトルと平面図形、ベクトル方程式#漸化式#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
座標平面上に 3 点 $A_{0} ( 0 , 0 ), B_{0} ( 2 , 0 ), C_{0}( 1 ,\sqrt{ 3 })$があり、線分$A_{0}B_{0},B_{0}C_{0},C_{0}A_{0}$をそれぞれ 2 : 1 に内分する点 $A_{1} ,B_{1} ,C_{1}$をとる。以下同様にして、正の整数nに対し、線分$A_{n}B_{n},B_{n}C_{n},C_{n}A_{n}$をそれぞれ 2 : 1 に内分する点$A_{n+1},B_{n+1},C_{n+1}$をとる。また、$\overrightarrow{ P_{n} }=\overrightarrow{ B_{n-1}B_{n} }(n=1,2,3,・・・)$とおく。
(1)$\overrightarrow{ p_{1} },\overrightarrow{ p_{2} }$をそれぞれ成分表示せよ。
(2)$\overrightarrow{ p_{n+2} }を\overrightarrow{ p_{n} }$を用いて表せ。
(3)$\displaystyle \sum_{k=1}^n \overrightarrow{ p_{2k-1}}$を$\overrightarrow{ p-1}$を用いて表せ。
(4)点B_{2n}の座標を求めよ。

2023北里大学医過去問
この動画を見る 

漸化式と素数

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=1$であり,$a_{n+1}=2a_n+1$である.
$a_n$が素数なら$n$は素数であることを示せ.
この動画を見る 

信州大 漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{1}=\displaystyle \frac{1}{12}$

$a_{n+1}=\displaystyle \frac{a_{n}}{1+6(n+1)(n+2)a_{n}}$

(1)
一般項を求めよ

(2)
$\displaystyle \sum_{k=1}^n a_k$

出典:2010年信州大学 過去問
この動画を見る 

千葉大 漸化式 証明

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#数学的帰納法#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{n}\displaystyle \frac{(1+\sqrt{ 3 })^n+(1-\sqrt{ 3 })^n}{4}$
$n \geqq 2$の自然数

(1)
$a_{n}$は整数

(2)
$a_{n}$を3で割ると余りは2である

出典:2013年千葉大学 過去問
この動画を見る 

愛媛 香川 大分 整式の剰余 整数 漸化式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#複素数#数列#漸化式#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)#愛媛大学#香川大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
愛媛大学過去問題
$x^{2009}$を$x^2+1$で割った時の余りを求めよ。

香川大学
$6n^5-15n^4+10n^3-n$は30の倍数であることを示せ。

大分大学
$a_1=2,a_{n+1}=4a_n-s_n$のときの一般項を求めよ。
$s_n=\displaystyle\sum_{k=1}^n a_k$である。
この動画を見る 
PAGE TOP