【高校数学】整数の性質 約数の総和に関する問題はこうやって解く! - 質問解決D.B.(データベース)

【高校数学】整数の性質 約数の総和に関する問題はこうやって解く!

問題文全文(内容文):
$N=p^2q$($p,q$は異なる素数)と表される数で
約数の総和が$2N$に等しいものをすべて求めよ。
チャプター:

0:00 問題(4)の解説
2:10 組合せのポイント解説

単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$N=p^2q$($p,q$は異なる素数)と表される数で
約数の総和が$2N$に等しいものをすべて求めよ。
投稿日:2024.04.13

<関連動画>

筆算するな! 開成中

アイキャッチ画像
単元: #算数(中学受験)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#過去問解説(学校別)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$
\begin{array}{r}
1234567 \\[-3pt]
2345671 \\[-3pt]
3456712 \\[-3pt]
4567123 \\[-3pt]
\underline{+\phantom{0}5671234}\\[-3pt]
\end{array}
$

9で割ったあまりは?

開成中学校
この動画を見る 

一工夫必要な不定方程式

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数(a,b)の組は何組あるか?

$3ab+4a-b=684$
この動画を見る 

2021!を5の504乗で割ったあまり

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2021!$を$5^{504}$で割った余りを求めよ.
この動画を見る 

ざ・見掛け倒し

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \displaystyle \sum_{n=1}^{2022} n^{2022}$
$ =1^{2022}+2^{2022}+3^{2022}+・・・・・・$
$+2021^{2022}+2022^{2022}$
を13で割った余りを求めよ.
この動画を見る 

【糸口を探せ!】整数:同志社国際高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\sqrt{24n}$と$\sqrt{n+27}$がともに整数になるような最小の自然数$n$の値を求めよ.

同志社国際高校過去問
この動画を見る 
PAGE TOP