大学入試問題#556「技はかかりそうだけど、正面突破」 東京帝国大学大正14年 #定積分 - 質問解決D.B.(データベース)

大学入試問題#556「技はかかりそうだけど、正面突破」 東京帝国大学大正14年 #定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} \displaystyle \frac{x+\sin\ x}{1+\cos\ x} dx$

出典:大正14年東京大学 入試問題
単元: #大学入試過去問(数学)#積分とその応用#不定積分#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} \displaystyle \frac{x+\sin\ x}{1+\cos\ x} dx$

出典:大正14年東京大学 入試問題
投稿日:2023.06.05

<関連動画>

どゆこと?

アイキャッチ画像
単元: #積分とその応用#不定積分#数Ⅲ
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
どゆこと?
「モールス信号」について解説しています。
この動画を見る 

大学入試問題#560「初手が大事」 同志社大学(2016) #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#同志社大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \sqrt{ e^{2x}+1 }\ dx$

出典:2016年同志社大学 入試問題
この動画を見る 

#高専#不定積分_17#元高専教員

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#高専(高等専門学校)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int\displaystyle \frac{(logx+1)^2}{x} dx$
この動画を見る 

#高専#不定積分-1

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x}{\sqrt{ 4-x^2 }} dx$
この動画を見る 

福田の数学〜北里大学2024医学部第2問〜関数と不等式の証明

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(1)関数$y=\frac{1}{x}$の定積分を用いて、$n\geqq 2$を満たすすべての$n$に対して$f(x)\gt 0$が成り立つことを示せ。
(2)$f(x)=x+\frac{x}{1+x}-2\log (1+x)$とおく。すべての正の実数$x$に対して、$f(x)\gt 0$が成り立つことを証明せよ。さらに、すべての正の整数$n$に対して$\frac{1}{n}+\frac{1}{n+1}\gt 2\log (1+\frac{1}{n})$を示せ。
(3)$n\geqq 2$を満たすすべての整数$n$に対して$\displaystyle \sum_{k=1}^n \frac{1}{k}-\frac{1}{2}(1+\frac{1}{n})\gt \log n$が成り立つことを証明せよ。
この動画を見る 
PAGE TOP