17京都府教員採用試験(数学:共通4番 組合せ) - 質問解決D.B.(データベース)

17京都府教員採用試験(数学:共通4番 組合せ)

問題文全文(内容文):
4⃣ $n \geqq 2 $,$1 \leqq r \leqq n-1 $
(1)${}_nC_r= {}_{n-1}C_{r-1}+{}_{n-1}C_r$
(2)$\displaystyle \sum_{k=r}^n {}_kC_r={}_{n+1}C_{r+1}$
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
4⃣ $n \geqq 2 $,$1 \leqq r \leqq n-1 $
(1)${}_nC_r= {}_{n-1}C_{r-1}+{}_{n-1}C_r$
(2)$\displaystyle \sum_{k=r}^n {}_kC_r={}_{n+1}C_{r+1}$
投稿日:2020.09.08

<関連動画>

不等式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x>yのとき、x^3>y^3を示せ。(x,yは実数)$
この動画を見る 

福田の数学〜大阪大学2025理系第4問〜不等式の証明と関数の極限

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

次の問いに答えよ。

(1)$t\gt 0$のとき

$-\dfrac{1}{t}\lt \displaystyle \int_{t}^{2t} \dfrac{\sin x}{x^2}dx \lt \dfrac{1}{t}$

が成り立つことを示せ。

(2)$\displaystyle \lim_{t\to\infty}\displaystyle \dfrac{\cos x}{x}dx=0$を示せ。

(3)$f(x)=\sin\left(\dfrac{3x}{2}\right)\sin\left(\dfrac{x}{2}\right)$おく。

$\displaystyle \lim_{t\to\infty}\displaystyle \int_{1}^{t} \dfrac{f(x)}{x}dx=\dfrac{1}{2} \displaystyle \int_{1}^{2} \dfrac{\cos x}{x} dx$

を示せ。

$2025$年大阪大学理系過去問題
この動画を見る 

学習院大 整式の剰余 積の微分公式証明

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#微分法と積分法#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#学習院大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^n-1$を$(x-1)^2$で割った余りを求めよ

出典:学習院大学 過去問
この動画を見る 

【数Ⅱ】【式と証明】二項定理の活用 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#式と証明#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の□に入る数を,二項定理を用いて求めよ。
${}_{101} \mathrm{ C }_0+{}_{101} \mathrm{ C }_2+{}_{101} \mathrm{ C }_4+…$$…+{}_{101} \mathrm{ C }_{98}+{}_{101} \mathrm{ C }_{100}=2^□$

二項定理を用いて,次のことを証明せよ。
ただし,nは3以上の整数とする。

(1)$(1+\dfrac{1}{n})^n>2$

(2) x>0 のとき $(1+x)^n>1+nx+\dfrac{n(n-1)}{2}x^2$




この動画を見る 

100年前の東大入試「1000の10乗根を小数第6位まで求めよ!」物理オリンピック金メダリスト林俊介解説

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \sqrt[10]{1000}$を二項定理を用いて小数第六位まで求めよ.
この動画を見る 
PAGE TOP