福田の数学〜立教大学2025理学部第1問(4)〜確率の基本的な性質 - 質問解決D.B.(データベース)

福田の数学〜立教大学2025理学部第1問(4)〜確率の基本的な性質

問題文全文(内容文):

$\boxed{1}$

(4)箱の中に緑色のカードが$5$枚、

黄色のカードが$4$枚、赤色のカードが$3$枚

入っている。

箱から無作為にカードを$3$枚取り出すとき、

$3$枚とも同じ色である確率は$\boxed{オ}$、

$3$枚の色がすべて異なる確率は$\boxed{カ}$、

$2$枚が同じ色であり、かつ、

残りの$1$枚が他の$2$枚と異なる色である確率は

$\boxed{キ}$である。

$2025$年立教大学理学部過去問題
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(4)箱の中に緑色のカードが$5$枚、

黄色のカードが$4$枚、赤色のカードが$3$枚

入っている。

箱から無作為にカードを$3$枚取り出すとき、

$3$枚とも同じ色である確率は$\boxed{オ}$、

$3$枚の色がすべて異なる確率は$\boxed{カ}$、

$2$枚が同じ色であり、かつ、

残りの$1$枚が他の$2$枚と異なる色である確率は

$\boxed{キ}$である。

$2025$年立教大学理学部過去問題
投稿日:2025.06.06

<関連動画>

【数A】【場合の数と確率】条件付き確率2 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
Aの袋には白玉3個と赤玉2個、Bの袋には白玉2個と赤玉3個、Cの袋には白玉1個と赤玉4個が入っている。1個のさいころを投げて1の目が出たらAの袋を、2,3の目が出たらBの袋を、4~6の目が出たらCの袋を選び、1個の玉を取り出すものとする。取り出された玉が白玉であったとき、それがCの袋から取り出された玉である確率を求めよ。
この動画を見る 

【数学】確率をイメージ・原理から詳しく!!並び替えの有無の判断基準は?

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学】確率をイメージ・原理から詳しく解説する動画です
この動画を見る 

福田のわかった数学〜高校1年生070〜場合の数(9)じゅず順列

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 場合の数(9) じゅず順列
次のような玉で数珠を作る方法は何通りか。
(1)白玉1個、黄玉2個、赤玉4個
(2)白玉2個、黄玉2個、赤玉4個
この動画を見る 

福田の1.5倍速演習〜合格する重要問題081〜北海道大学2018年度文系第3問〜確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 赤色、青色、黄色のサイコロが1つずつある。この3つのサイコロを同時に投げる。赤色、青色、黄色のサイコロの出た目の数をそれぞれR,B,Yとし、自然数s,t,uをs=100R+10B+Y, t=100B+10Y+R, u=100Y+10R+B で定める。
(1)s,t,uのうち少なくとも2つが500以上となる確率を求めよ。
(2)s>t>uとなる確率を求めよ。

2018北海道大学文系過去問
この動画を見る 

福田の数学〜青山学院大学2021年理工学部第1問〜さいころの目の最大最小の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#確率#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$1個のさいころを4回投げるとき、出た目の最小値をm、最大値をMとする。
(1)$m \geqq 2$となる確率は$\frac{\boxed{\ \ アイウ\ \ }}{\boxed{\ \ エオカキ\ \ }}$であり、
$m=1$となる確率は$\frac{\boxed{\ \ クケコ\ \ }}{\boxed{\ \ サシスセ\ \ }}$である。
(2)$m \geqq 2$かつ$M \leqq 5$となる確率は$\frac{\boxed{\ \ ソタ\ \ }}{\boxed{\ \ チツ\ \ }}$であり、$m \geqq 2$かつ$M=6$となる確率は
$\frac{\boxed{\ \ テト\ \ }}{\boxed{\ \ ナニヌ\ \ }}$である。

(3)$m=1$かつ$M=6$となる確率は$\frac{\boxed{\ \ ネノハ\ \ }}{\boxed{\ \ ヒフヘ\ \ }}$である。

2021青山学院大学理工学部過去問
この動画を見る 
PAGE TOP