筑波大 横国大 4次方程式 対数連立方程式 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

筑波大 横国大 4次方程式 対数連立方程式 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
筑波大学過去問題
$f(x)=x^4+2x^2-4x+8$
(1)$(x^2+t)^2-f(x)=(px+q)^2$が恒等式になるような整数t,p,qの値を1組求めよ。
(2)$f(x)=0$のすべての解を求めよ。

横浜国立大学過去問題
連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
log_{2x}y+log_x2y=1 \\
log_2xy=1
\end{array}
\right.
\end{eqnarray}$
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#指数関数と対数関数#恒等式・等式・不等式の証明#対数関数#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#筑波大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
筑波大学過去問題
$f(x)=x^4+2x^2-4x+8$
(1)$(x^2+t)^2-f(x)=(px+q)^2$が恒等式になるような整数t,p,qの値を1組求めよ。
(2)$f(x)=0$のすべての解を求めよ。

横浜国立大学過去問題
連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
log_{2x}y+log_x2y=1 \\
log_2xy=1
\end{array}
\right.
\end{eqnarray}$
投稿日:2018.08.07

<関連動画>

ε-N論法 #3 lim n/n+2 =1

アイキャッチ画像
単元: #数Ⅱ#式と証明#微分法と積分法#恒等式・等式・不等式の証明#平均変化率・極限・導関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{n\to\infty} \dfrac{n}{n+2}=1$を
$ε-N$論法を利用して示せ.
この動画を見る 

相加相乗平均のエレガントな証明2通り

アイキャッチ画像
単元: #数Ⅱ#式と証明#指数関数と対数関数#指数関数
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \dfrac{a_1+a_2+・・・・+a_n}{n}\geqq \sqrt[n]{a_1,a_2・・・・a_n}$
これを求めよ.

この動画を見る 

福田の数学〜北海道大学2023年文系第1問〜関数方程式と剰余定理因数定理

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#恒等式・等式・不等式の証明#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ P(x)をxについての整式とし、P(x)P(-x)=P($x^2$)はxについての恒等式であるとする。
(1)P(0)=0またはP(0)=1 であることを示せ。
(2)P(x)がx-1で割り切れないならば、P(x)-1はx+1で割り切れることを示せ。
(3)次数が2であるP(x)を全て求めよ。

2023北海道大学文系過去問
この動画を見る 

東京理科大 指数方程式 実数解の条件 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#2次関数#式と証明#2次方程式と2次不等式#指数関数と対数関数#恒等式・等式・不等式の証明#指数関数#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
'07東京理科大学過去問題
$9^x+9^{-x}-(a+1)(3^x+3^{-x})-2a^2+8a-4$
$=0$
(1)$a=-5$のとき、解け
(2)実数解をもつaの範囲
この動画を見る 

【超難問】1+8が難しい世界

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#式と証明#式の計算(整式・展開・因数分解)#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
深読みしすぎた$1+8$の計算
この動画を見る 
PAGE TOP