筑波大 横国大 4次方程式 対数連立方程式 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

筑波大 横国大 4次方程式 対数連立方程式 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
筑波大学過去問題
$f(x)=x^4+2x^2-4x+8$
(1)$(x^2+t)^2-f(x)=(px+q)^2$が恒等式になるような整数t,p,qの値を1組求めよ。
(2)$f(x)=0$のすべての解を求めよ。

横浜国立大学過去問題
連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
log_{2x}y+log_x2y=1 \\
log_2xy=1
\end{array}
\right.
\end{eqnarray}$
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#指数関数と対数関数#恒等式・等式・不等式の証明#対数関数#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#筑波大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
筑波大学過去問題
$f(x)=x^4+2x^2-4x+8$
(1)$(x^2+t)^2-f(x)=(px+q)^2$が恒等式になるような整数t,p,qの値を1組求めよ。
(2)$f(x)=0$のすべての解を求めよ。

横浜国立大学過去問題
連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
log_{2x}y+log_x2y=1 \\
log_2xy=1
\end{array}
\right.
\end{eqnarray}$
投稿日:2018.08.07

<関連動画>

福田のわかった数学〜高校3年生理系094〜不等式の証明(1)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 不等式の証明(1)
$\cos x \lt 1-\frac{x^2}{2}+\frac{x^4}{24} (x \gt 0)$を証明せよ。
この動画を見る 

08東京都教員採用試験(数学:1-(1) 相加平均・相乗平均)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
1⃣(1) x,y,zは正の数
x+2y+4z=2のとき
xyzの最大値を求めよ。
この動画を見る 

室蘭工業大 整式の剰余

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)#室蘭工業大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$自然数

(1)
$x^{3m}+1$を$x^3-1$で割った余りを求めよ

(2)
$x^n+1$を$x^2+x+1$で割った余りを求めよ

出典:1998年室蘭工業大学 過去問
この動画を見る 

19東京都教員採用試験(数学:相加相乗平均)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
1⃣(1)
x>0のとき
$\frac{x^2+x+196}{x+1}$
の最小値と、そのときのxの値を求めよ。
この動画を見る 

福田のおもしろ数学443〜不等式の証明と等号成立条件

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$a,b,c$は正の実数とする。

$\sqrt[3]{abc}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \geqq 2\sqrt3$

を証明し、等号成立条件を調べてください。
   
この動画を見る 
PAGE TOP