筑波大 横国大 4次方程式 対数連立方程式 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

筑波大 横国大 4次方程式 対数連立方程式 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
筑波大学過去問題
$f(x)=x^4+2x^2-4x+8$
(1)$(x^2+t)^2-f(x)=(px+q)^2$が恒等式になるような整数t,p,qの値を1組求めよ。
(2)$f(x)=0$のすべての解を求めよ。

横浜国立大学過去問題
連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
log_{2x}y+log_x2y=1 \\
log_2xy=1
\end{array}
\right.
\end{eqnarray}$
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#指数関数と対数関数#恒等式・等式・不等式の証明#対数関数#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#筑波大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
筑波大学過去問題
$f(x)=x^4+2x^2-4x+8$
(1)$(x^2+t)^2-f(x)=(px+q)^2$が恒等式になるような整数t,p,qの値を1組求めよ。
(2)$f(x)=0$のすべての解を求めよ。

横浜国立大学過去問題
連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
log_{2x}y+log_x2y=1 \\
log_2xy=1
\end{array}
\right.
\end{eqnarray}$
投稿日:2018.08.07

<関連動画>

福田のおもしろ数学361〜複雑な関数方程式の解

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
実数から実数への関数 $f(x)$ が任意の実数 $x$, $y$ に対して
$
f(yf(x+y)+f(x))=4x+2yf(x+y)
$
を満たしている。このような関数 $f(x)$ をすべて求めよ。
この動画を見る 

【高校数学】2文字の恒等式について~問題演習~ 1-7.5【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
等式3x²-2xy+7y²=a(x+y)²+b(x+y)(x-y)+c(x-y)²
がx,yについての恒等式となるように定数a,b,cの値を求めよ。
この動画を見る 

福田の一夜漬け数学〜多変数関数、1文字固定(受験編)

アイキャッチ画像
単元: #数Ⅱ#式と証明#図形と方程式#微分法と積分法#恒等式・等式・不等式の証明#軌跡と領域#平均変化率・極限・導関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a+b+c=1$のとき、$a^2+b^2+c^2$の最小値を求めよ。

$xy$平面内の領域$-1 \leqq x \leqq 1,-1 \leqq y \leqq 1$ において、$1-ax-by+axy$
の最小値が正であるような$(a,b)$の存在範囲を図示せよ。
この動画を見る 

綺麗な三次方程式

アイキャッチ画像
単元: #数Ⅱ#式と証明#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(x-3)^3+(x-2)^3+(x-1)^3=x^3$
これを解け.
この動画を見る 

福田の数学〜立教大学2022年経済学部第1問(3)〜整式の割り算と余り

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
aを定数とする。
3次式 $F(x)=x^3-6x+a$を2次式$G(x)=x^2 -3x+2$で割った余りを$R(x)$ とする。
G(x)がR(x)で割り切れるようなaの値をすべて求めよ。

2022立教大学経済学部過去問
この動画を見る 
PAGE TOP