【高校数学】 数B-56 数列とは? - 質問解決D.B.(データベース)

【高校数学】 数B-56 数列とは?

問題文全文(内容文):
$1,3,5,7,・・・$のように,数を一列に並べたものを数列といい,
数列を作っている各数を①という.
その中でも最初のものを②,最後のものを③という.

問題1
一般項$\{ an \}$が次の式で表される数列の$\large{a_1,a_4,a_7}$を求めよう.

④$2n-1$

⑤$-3n+2$

⑥$(-1)^n$

問題2
次の数列の一般項$\large{a_n}$を推測しよう.

⑦$3,6,9,12,・・・$

⑧$\dfrac{3}{2},\dfrac{9}{4},\dfrac{27}{6},\dfrac{81}{8},・・・$

⑨$-1,2,-3,4,・・・$
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$1,3,5,7,・・・$のように,数を一列に並べたものを数列といい,
数列を作っている各数を①という.
その中でも最初のものを②,最後のものを③という.

問題1
一般項$\{ an \}$が次の式で表される数列の$\large{a_1,a_4,a_7}$を求めよう.

④$2n-1$

⑤$-3n+2$

⑥$(-1)^n$

問題2
次の数列の一般項$\large{a_n}$を推測しよう.

⑦$3,6,9,12,・・・$

⑧$\dfrac{3}{2},\dfrac{9}{4},\dfrac{27}{6},\dfrac{81}{8},・・・$

⑨$-1,2,-3,4,・・・$
投稿日:2016.01.20

<関連動画>

10大阪府教員採用試験(数学:1番 数列の極限値)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#関数と極限#数列の極限#その他#数学(高校生)#数B#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
1⃣$-\frac{3}{2} < a_1 < 3$ , $a_{n+1}=\sqrt{2a_n+3}$
(1)$a_1 < a_2$
(2)$2 \leqq n, 0 < a_n < 3$
(3)$1 \leqq n, 0 < 3-a_n \leqq (\frac{2}{3})^{n-1}(3-a_1)$
(4)$\displaystyle \lim_{ n \to \infty } a_n$
この動画を見る 

等差数列の和 視聴者さんからいただいた問題

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
77+78+79+・・・+99
この動画を見る 

東大 レピュニット数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#数列#数学的帰納法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\overbrace{ 1111 + \cdots +11}^{3^n桁}$は$3^n$で割り切れるが
$3^{n+1}$では割り切れないことを示せ.

東大過去問
この動画を見る 

慶應(医)数列 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
慶応義塾大学過去問題
数列$\{ a_n \}$の項の間に次の関係がある。
$a_1=\frac{1}{2},a_2=\frac{1}{6}$
$\frac{a_n+a_{n+1}+a_{n+2}}{3} = \frac{1}{n(n+3)}$
$n=1,2,3\cdots$
$a_3,a_4,a_n,\displaystyle\sum_{k=1}^\infty a_n$を求めよ。
この動画を見る 

20年5月数学検定準1級1次試験(数列)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数列#数列とその和(等差・等比・階差・Σ)#数学検定#数学検定準1級#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
$\boxed{3}$
$3a_n-2s_n=3^n(s_n=a_1+a_2+・・・+a_n)$

20年5月数学検定準1級1次試験(数列)過去問
この動画を見る 
PAGE TOP