無限に続く3乗根 - 質問解決D.B.(データベース)

無限に続く3乗根

問題文全文(内容文):
$3\sqrt{2\sqrt[3]{2\sqrt[3]{2\sqrt[3]{2\sqrt[3]{2・・・・・・}}}}}$
$(a)2$
$(b)\sqrt2$
$(c)\sqrt[3]{4}$
これを解け.
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3\sqrt{2\sqrt[3]{2\sqrt[3]{2\sqrt[3]{2\sqrt[3]{2・・・・・・}}}}}$
$(a)2$
$(b)\sqrt2$
$(c)\sqrt[3]{4}$
これを解け.
投稿日:2021.12.21

<関連動画>

【数Ⅰ】中高一貫校問題集3(論理・確率編)19:集合と命題:命題と条件:必要条件、十分条件の見分け方

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
教材: #TK数学#TK数学問題集3(論理・確率編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
「x=2」ならば「x²=2x」であるための○○条件である 【集合と命題】【必要十分条件】
この動画を見る 

式の値 早稲田実業

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$a^2 - b^2 -a -b = 0$のとき
$a^2+b^2-2ab-a+b=?$
(a>0,b>0)
早稲田実業学校
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学IA問題1[1]。2次方程式の解に関する問題。

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} [1]cを正の定数とする。xの2次方程式\\
2x^2+(4c-3)x+2c^2-c-11=0 \ldots①\\
について考える。\\
(1)c=1のとき、①の左辺を因数分解すると(\boxed{\ \ ア\ \ }\ x+\boxed{\ \ イ\ \ })(x-\boxed{\ \ ウ\ \ })であるから、\\
①の解はx=-\frac{\boxed{\ \ イ\ \ }}{\boxed{\ \ ア\ \ }}, \boxed{\ \ ウ\ \ }である。\\
\\
\\
(2)c=2のとき、①の解はx=\frac{-\ \boxed{\ \ エ\ \ }±\sqrt{\boxed{\ \ オカ\ \ }}}{\boxed{\ \ キ\ \ }} であり、大きい方の解を\alphaとすると\\
\frac{5}{\alpha}=\frac{\boxed{\ \ ク\ \ }+\sqrt{\boxed{\ \ ケコ\ \ }}}{\boxed{\ \ サ\ \ }}である。また、m \lt \frac{5}{\alpha} \lt m+1を満たす整数mは\boxed{\ \ シ\ \ }である。\\
\\
\\
(3)太郎さんと花子さんは、①の解について考察している。\\
太郎:①の解はcの値によって、ともに有理数である場合もあれば、ともに無理数\\
である場合もあるね。cがどのような値のときに、解は有理数になるのかな。\\
花子:2次方程式の解の公式の根号の中に着目すればいいんじゃないかな。   \\
\\
①の解が異なる2つの有理数であるような正の整数cの個数は\boxed{\ \ ス\ \ }個である。
\end{eqnarray}

2021共通テスト数学過去問
この動画を見る 

【数Ⅰ】集合と命題:実数全体を全体集合とし、その部分集合A, B, CをA={x| -3≦x≦5}, B={x| |x|<4}, C={x| k-7≦x≦k+3} (kは定数)とする。

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
実数全体を全体集合とし、その部分集合A, B, Cを$A={x| -3≦x≦5}, B={x| |x|<4}, C={x| k-7≦x≦k+3} $(kは定数)とする。
(1)次の集合を求めよう。
(ア)Bバー
(イ)A∪Bバー
(ウ)A∩Bバー。
(2)A⊂Cとなるkの値の範囲を求めよう。
この動画を見る 

【算数・中学数学・数Ⅰ】算数でも数学でも出てくる「平均値と中央値」の違い~年収のお話もあるよ~ ※2020年度学習指導要領改訂で中央値は算数で習うようになりました。

アイキャッチ画像
単元: #算数(中学受験)#数学(中学生)#中1数学#数Ⅰ#資料の活用#データの分析#データの分析#その他#その他#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
平均と中央値って何が違うの??日本の平均年収441万円ってどうなのよ??
データを読み解く力は、今後とても大切です!!必見。
この動画を見る 
PAGE TOP