福田の数学〜大阪大学2025文系第2問〜漸化式と数列の和 - 質問解決D.B.(データベース)

福田の数学〜大阪大学2025文系第2問〜漸化式と数列の和

問題文全文(内容文):

$\boxed{2}$

次の条件によって定められる数列$\{ a_n\}$がある。

$a_1=1,a_{n+1}=\dfrac{2n-1}{2n}a_n \quad (n=1,2,3,\cdots)$

(1)正の整数$k,\ell$に対して

$\dfrac{k}{k+\ell-1}a_{k+1}a_{\ell}+\dfrac{\ell}{k+\ell-1}a_ka_{\ell+1}=a_ka_{\ell}$

が成り立つことを示せ。

(2)正の整数$m$に対して

$\displaystyle \sum_{k=1}^{m} a_ka_{m-K+1}=1$

が成り立つことを示せ。

$2025$年大阪大学文系過去問題
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

次の条件によって定められる数列$\{ a_n\}$がある。

$a_1=1,a_{n+1}=\dfrac{2n-1}{2n}a_n \quad (n=1,2,3,\cdots)$

(1)正の整数$k,\ell$に対して

$\dfrac{k}{k+\ell-1}a_{k+1}a_{\ell}+\dfrac{\ell}{k+\ell-1}a_ka_{\ell+1}=a_ka_{\ell}$

が成り立つことを示せ。

(2)正の整数$m$に対して

$\displaystyle \sum_{k=1}^{m} a_ka_{m-K+1}=1$

が成り立つことを示せ。

$2025$年大阪大学文系過去問題
投稿日:2025.06.16

<関連動画>

数学「大学入試良問集」【13−6 連立漸化式】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の条件によって定められる数列$\{x_n\},\{y_n\}$を考える。
$x_1=1,y_1=5$ $x_{n+1}=x_n+y_n$ $y_{n+1}=5x_n+y_n(n=1,2,・・・)$

次の問いに答えよ。
(1)
$a_n=x_n+cy_n$とおいたとき、数列$\{a_n\}$が等比数列となるように定数$c$の値を定め、$a_n$を$n$の式で表せ。

(2)
$x_n$および$y_n$を$n$の式で表せ。
この動画を見る 

【よく出る応用問題!】f(n)の絡む漸化式を5分で解説!〔数学、高校数学〕

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 3rd School
問題文全文(内容文):
f(n)の絡む漸化式について解説します。
以下の漸化式で表される数列の一般項を求めよ。
$a_{n+1}=2a_n+3n-3$ $a_1=1$
この動画を見る 

福田の数学〜京都大学2025理系第6問〜確率確率漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{6}$

$n$は$2$以上の整数とする。

$1$枚の硬貨を続けて$n$回投げる。

このとき、$k$回目$(1\leqq l \leqq n)$に表が出たら

$X_k=1$、裏が出たら$X_k=0$として、

$X_1,X_2,\cdots ,X_n$を定める。

$Y_n=\displaystyle \sum_{k-2}^{n} X_{k-1}X_k$とするとき、

$Y_n$が奇数である確率$p_n$を求めよ。

$2025$年京都大学理系過去問題
この動画を見る 

福田のおもしろ数学499〜1分チャレンジ!数値計算

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\dfrac{(4\times 7+2)(6\times 9+2)(8\times 11+2)\cdots}{(5\times 8 +2)(7\times 10 +2)(9\times 12 +2)\cdots }$

$\dfrac{\cdots (100\times 103+2)}{\cdots (99\times 102+2)}$

を計算して下さい。
    
この動画を見る 

旭川医科大2021 確率漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
コイン2枚 表表+2,表裏+1,裏裏0であり,0からスタートする.
$n$回の合計が
(1)$a_1,b_1,c_1,a_2,b_2,c_2$のとき,求めよ.
(2)$a_{n+1},b_{n+1},c_{n+1}$を,$a_n,b_n,c_n$で求めよ.
(3)$x_{n+1}=\dfrac{1}{4}x_n;\dfrac{1}{4}$を$x_1$を用いて表せ.
(4)$a_n$を求めよ.

2021旭川医大過去問
この動画を見る 
PAGE TOP